
I AD-A262 517

IIt

IDTIC ELCT

APR 0 2 1993I : Ada

PROCEEDINGS OF THE ELEVENTH ANNUAL
NATIONAL CONFERENCE ON Ada TECHNOLOGY

MARCH 15-18, 1993

Sponsored By:
ANCOST, INC.

Reproduced From With Participation By:
Best Available Copy United States Army 93-06833

United States Navy
United States Air Force

United States Marine Corps
Ada Joint Program Office

Defense Information Systems Agency
Federal Aviation Administration

National Aeronautics & Space Administration

Academic Host: 'jjgTaIBU,,•.d -'/TEME: 6

I

I PROCEEDINGS OF THE ELEVENTH ANNUAL

NATIONAL CONFERENCE ON
Ada TECHNOLOGY

Sponsored By:I ANCOST, INC.

I With Participation By:
United States Army
United States Navy

United States Air Force
United States Marine Corps
Ada Joint Program Office

Defense Information Systems Agency
Federal Aviation Administration

National Aeronautics & Space Administration
Academic Host: Accesion For

I Virginia State University noTIcS TAB

JustificationI DTICe Q'uAL= rY NSECTED 4
_ BY ,

Williamsburg Hilton--Williamsburg, VA oDit. ibition

I Availability Codes
March 15-18, 1993 Avail andd/or

D ist Special

The Papers in this volume were printed directly from unedited reproduc-ble copies prepared by
the authors. Responsibility for contents rests upon the author, and not ihe symposium committee
or its members. After the symposium, all publication rights of each paper are reserved by their
authors, and requests for republication of a paper should be addressed to the appropriate author.
Abstracting is permitted, and it would be appreciated if the symposium is credited when abstracts
or papers are republished. Requests for individual copies of papers should be addressed to the
authors.

I
"- Annroved for Public Release: Distribution Unlimited

wpo law P'1ý7

ELEVENTH ANNUAL NATIONAL CONFERENCE ON Ada
TECHNOLOGY CONFERENCE COMMITT7EE 1992-1993

Executive Committee Clir: TuaioriaI Chair: Conference Director
MR. STEVE LAZEiROW1CIL Aisys MS. CHRISTINE BRAUN, GTE MARJORIE Y. RISINGER, CMI',

Federal Systems Rosenberg & Risinger
T1rasearar"
MS. SUSAN MARKEL, TRW Techajlal Program Chair: ADVISORY MEMBERS...

MR. DANIEL E3. HOCKING. Army
fecbay: Reseach Laboratory MR. CURiRIE COLKET, US Navy

MR. MURRAY IGRCH, Stockton State
University Student Paper" Chair:WTOCRAUSAr1

DR. MARTIN BARRETT, Pas Sim*COA.U A ~~
lmmediate Pam Chair. University Harrisburg MPL JEFFREY HERMAN, US Anny
MS. DEE GPAUMANN, GDE CIBCOKh SED
Systems, Inc. MR. MIGUEL A. CARRIO, JR., WMT

Comference Chair: Engineering MR. DANIEL E. HOCKING, Army

MS. JUDI'M M. GILES, Intermetrics, MS. LUWANA S. CLEVER, Florida eerhLbrtr

Inc.Institute of Technology MR. HUET LANDRY, DISA Center
for Standards

Academic Outreach: MR. NOEL GOYETIE,ý Computer
-MR. JAMES WALKER, Network Sciene Corporation MR. E.V. (SE..B) SALTER, DISA,
Solutions

MS. JUDY GRImM-, Software DR. JOHN SOLOMONLI, AR"O
Budget Committee Chair Moderaizadon Institute
MR. MICILAEL SAPENTER, Telos, MR. CARRINGTON STEWART.
Federal Systems DR. JAMES HOOPER. Marshall NASA

Policies, Procedure A 13y-Laws Chair: Uiest MS. CAROl YN SWRANO, FAA
DR. RICHARD KUNiTZ Monmouth MR. GLEN HUGHES, Rational

Puiblic RltosCarM.KAY TREZZA. USAmy

MS. BEVERLY AFWI! IA R EMMANUEL OMOJOKUN, CECOM, SED
Virginia State University

Pushb Chair
MS. DEE GRAUMAN?4. b3DE MS. LAUR VEI1h, Raitional
SysteMA Inc.

4~

Tenth Annual National Ada Conference Committee

I"p

I.I IV Lo

>\~ HYATT REGENCY

CRYSTAL CITY,
VIRGINIA

I ~ 1992 Ada Conference

o (jA 5

i' '

-0 1 4 1

A~W vj 4l

t.41%aA

39

-'tN1WW4 rf

5~~Wi AdaCn-rne
Hig ig7sr7\7

21•1

j4

* -MA

ý RA

Al

1992 Ada Conference
Keynote Speakers

dj

let, I I-A

1992 Ada Conference

Awards and Thank You's

T f

Table of Contents
Tuesday, March 16, 1993 Wednesday, March 17, 1993

Opening Session: 8:30amn - 10:00arm
Keynoe Speaker: or. Barry Hoowitz mwitre Coraotion 1 Opening Session: 0:3Oam-10:O0am

Keynote Speaker: LTG Peter A Kind.................... 4
kquilstlon Panel: 10:15Sam -12 Noon

Moderator. LTG Alonzo E. Sh4 Jr., DISA...................2Z7 MAsSag: 9:00amn -10:3Oamn
Moderator. Joan McGarrt, COMANAVCOMTECCOM...........63

Luncheon: 12 Noon - 1.30pmn
Speaker Donaild Mullikin. FAA............................. 3 Government Training for Ada & SWN Engineering: 9.%am - 10.30am

Moderator. Capt Dave Cook, U.S. Air Force 5........ 4
Appcatllons: 2:00pmn - 3:30pm

Chaiperon:Caringon Sewat, ASAJSCSoftware Reuse Cross Section: 9.00am - 10:30am

6.1 fast Anal~4cal Sirmulation of Missile Flights - Y. Lea, Naval Moderator: Jim Hass, HODA 65
Postgraduate School, Montereiy, CA and J. V. Waite, Pacific

Missile Test Ceritbr, Point Mugu, CA................... a Education and Training 1: 10:45amr.- 12:15pm
Chairperson: Dr. James Hooper, Marshall University

1.2 Ad& Application rgrn Inerfaces to X 400 Protocol . Mu d o emBsd otaeEgnergApo
Servic-s -C. A Eldridge, Sparta, Inc., Motear, VA 1741 sn;A&fraTmBseSotroEgeri prac

to CSI - A. Lodgher a" J. Hooper, Marshall University,
Student Papers: 2:00pmn -330pm 6
Chairperson: Dr .. Martin Barrel. Penn State Harrisburg 4.2 A Comparison of Ada and C as Teaching Languages-

2.1 Astrodynamnics 101: A Case Study in Ada Object Based M. L. Ba~eft and M. S. Richman, Penin State Harrisburg,
Programming - R. Kovacs, University of Colorado Middletown. PA 92

2.2 Achitactmni Decomposition of Software Applications.- 4.3 The TIPS E: An Educational Support Environm'erit for

K Reese arnd G. Cort, Stockton State College 30 Software Engineering Education - M. B. Ratcliffe,
M. F. Soft, T. J. Stotter-Brooks ari B. R. Mi~tte,

2.3 Tesachng the Sezonvd Computeer Science Course insa Universt College of Wales, Aberystwyth, Dyfed, U. K. . 97
Rause-Based Seeting: A Sequence of Laboratory Assimonments
in Ad& - J. Gray, West Virginia University 8L!0 Cycle Issues: 10:45amn - 12:15pm

Chairperson: Dee Graumnarw, GDE Systems, Inc.

Reuse:~Re 2&0I. :0p . The Rapi Development Methodo~ogy Applied to Software
Chairperson: Danial Hocking, U.S. Ar myRsach LaboratoryItnsvPrec .LG rfaidWH pil,

31 Domain Specific Software Architectires: A Process ix Jet Propulsion Laboratory, Pasadena, CA 112
Architedtre-B&-d Software Engineering - C. Braun,
GTE Federal Systems, Chantilly, VA and J. Armnitage, 5.2 A Farmer's Guide to OCA: Harvesting Requirements -

GTE Communications Systems, Pittsburgh, PA 46J. D. Boyken, B. K Mitchell and M. J. O'Connior,
Coleman Research Corp., Huntsville, AL 121

3.2 Domain Engineering: Estahilishing Large Scale, Systematic S d efrac susi elTm aptrEvrnet
Software Reuse - W. R. Stewart arid W. G. Vitaletti, Softech, 5 d efrac susI elTm rrpjrErmomrr
Inc., Alexandria, VA 5R M. Plishka, University of Scranton, Scranton. PA 127

&3 A Practical Guide for Ada Reuse - R. H. To" and Defense Software Repository System Panel: 10:45amn - 12:15pm
M. W. Price, MountairuNet Inc., Mor~antown, WV 7 Moderator. Joanne Piper, DISA ;...........135

Engineering Environments & Emerging Standards: 4:00pm - 5:30pmn Ad& In Undergraduate Computing Education: Experience & Lessons
Moderator. Frank Bett TRW...........................50o Learned: 2:lpm -3:45pm

Moderator. John Seidler, University of Scrarton 136

Ada OX Update: 4:O00M - 5:30pm
Moderator. Chris Anderson, United States Air Force 61 Programming In the Large: 2:15pmn - 3:45pm

Moderator. Dr. DwAld Mullikin, FAA 137
Reussa Education: 4:00pm -5:30pmn
Moderator. Dr. Charles Lillie, SAIC.............................82Pause interoperabinty Gri~.p: 2:15pmn - 3:45pm

Moderator Jim Moore, IBM and Dave Dike[, Applied Expetise, lic~ 138
Vendor Hospitality Suites: 7:00pm -10:00pmn

Educationt and Tiallinng If: 4:00pmn 5:30pm h rdynarh 1 ,1 9
Chairperson: Murray lirch, Stockton State College T u s a ,M rh 1 ,1 9

&1 Trarsiton to Ada- A Cese Study - U. LeJeune wid Opening S~ession: I T)am. 9:15am
M. Klrojr. Stocidon State College, Pomona, NJ. 139 Keynote Spoaker. C~ -Id Ebker, Federal Systems Comnpany, IBM . 5

&2 Thir*ing in Ada - How Some Students Experience Process Oriented Rouse Experience to Date: 9:30amn - 12:30pm
Their New Language - K. J. Cogan, Standard Army Modcrettor. Dr. Dernis Aherrn. Westinighouse Electronics
Management Information Systems, Fort Belvoir, VA.....144 System Grop.............................. 196

6.3 Integrating Atda Into Reai-Time Laboratory Teaching - SEI Metrics Recommenefdaions: 9:30amn- .704~m
*R. J. Bohimarri Valparaiso University, Valparaiso, IN....150 Moderator: Dr. Robart Park, Software Engireening Institute 197

Envlronmneanta: 4:00pm -5:30pm biJsting Re-engineering Tools &Capabilifties: 9:30am.- 12:30am
Chairperson: Michael Sapertor, Telos Federal Group Mooerstor HarsMm lktw, N~aD................... 198

7.1 Next Generation Computer Resources (NGCR) Proj%1 Suppot Current Issues: 11:15am - 12:30pm
Ernvimroreent Stanards (PSES) -T. Obemdorf C. Sctniedekamp, Chairperson: Susan Market, TRW 199
Naval Air Warfare Certer, Warminrster, PA; aind V. Squitieri,
Space "n Naval Warfare Systems Commanard, WasNt DC .*10Luncheon: 12:30pm -.2:O0pm

Speaker: RADM Robert M.Moore,U.S. Navy 6

7.2 NICLS: A Natu~ral Interface for a Combined tLangtuxge
System - J. H. Gray, TRW, Inc., Hunitsville, AL. and 8.1 Mathematics, Engineering, and Softwarn Development -
J. W. Hooper, Marshall University, Huintington, WV......16 M. J. Lit, Rochester Institute of Tedcrnology,

Rochester, NY 200
7.3 STRAda - A Software Toot for Distributed Ada -0. Bekele,

C. Bemnor, M. Filali, J. M. Rigaud and A Sayali, IRIT, 8.2 Modeling fth Total Costs of Military Software - C. Jones,

Urriversite Paul Sabatier, France.................... 184 Software Productivity Research, Inc., Burlington, MA ... 206

Software Re-engineerng Panel: 4:00pm - C:30pm Futures Panel: 2:15pm - 4:00pm
Moderator: Jim Mohandl, Naval Air Warfare Center........ 195 Moderator: Miguel Carrio, Jr., MTM Engineering 215

Author's Index216

PROCEEDINGS
ELEVENTH1 ANNUAL NATIONAL CONFERENCE ON Ada TECIhNOLOGY

Bound-Available aM Fort Monmouth Photocopieg--Available at Department of Commerce.
Information on pr-ices ard shipping charges should r'. requested

2nd Annual National Conference on Ada Techbnology, 1984--1'N/A) from.:
3rd Annual National Conference on Ada Technology, 1995--410.00
4th Annual Na~ional Conference on Ada Technology, 1t186--(N/A) U.S. Department of Commerce
Sth Annual National Conference on Ada Technology, 1987--(NIA) National Technical Information Service
6th Annual National Conference on Ada Technology, 19884-20.00 Springfield, VA 22151
7th Annual National Conference en Ada Technolugy, 1989-420.00 USA
&th Annual National Conference on Ada Technology, 1990--$25.00
9th Annual National Conference on Ada Technology, 1991--$25.00 Include titlle-, year, and AD number
10th Annual National Conferenee on Ada Tezhnology 1992--$25.00
11th Annual National Conference on Ada Technology 19934-25.00

2nd Annual National Conference on Ada Technology. 1984-AD
A142403

Extra Copies: 1-3 $25 each; next 7 $20 each; 11 & more 515 3rd Annual National Conference on Ada Technology. 1985-AD
each. A164338

41h Annual National Conference on Ada Technology, 1986,-AD
Make check or bank draft payable in U.S. dollars tc ANCOST and A167802
forward requests to: Sih Annual National Conference on Ada Technology, 1987-AD

A137690
Annual National Conferernce on Ada Technology 6th Annual National Conference on Ada Technology, 1988-AD
US. Army Communications-Electronics Command A190936
ATTN; AMSEL-RD-SE-CRM (Ma. Kay Trezza) 71h Annual National Conference on Ada Technology, 1989-AD
Fort Monmnouth, NJ 0-7703-50M0 A217979

8th Ananual National Conference on Ada Technology, 1990-AD
Telcphone inquiries may be directed to Ma. Kay Trezza at A2191777
9081532-1898. 91h Annual National Conference on Ada Technology, 1990-AD

A233469
10th Annual National Conference en Ada Technology, 1990-AD
A248007

Keynote Speaker

Dr. Barry Horowitz
President & CEO

The MITRE Corporation

Dr. Barry M Horowitz is MITRE's designs, and initiated an activity to build
president and chief executive officer. He a real-time simulation facility to evaluate
served from 1987 through 1990 as new designs and concepts for the FAA.
executive vice president and chief This effort resulted in what currently is a
operating officer, responsible for the major FAA resource for designing
general management and direction of the advanced automation systems. He also
company's overall technical, financial, played a major role in the analysis and
and administrative activities. Earlier, he regulation process that resulted in new
was group vice president and general governmeant standards for independent
manager of the company's operations in IFR approaches to parallel runways.
Bedfo-d, MA, which are primarily in During the period from 1979 to the
support of the Air Force. Dr. Horowitz present at MITRE, Dr. Horowitz moved to
became a member of MITRE's Board of the company's headquarters in Bedford,
Trustees in February 1989. MA, and rose in rank from Director of

Dr. Horowitzjoinrd MITRE in 1969 Special Studies to his present position.
at the company's Washington Center In addition to his management role, he
located in McLean, VA, and held a has been a strong persona! contributor to
succession of positions from technical a wide variety of initiatives in the area of
staff to department head. Most of his stretegic command and control. He is a
effort was devoted to air traffic control, in national authority on techniques for
support of the FAA. During the period managing engineering programs.
from 1969 to 1979, he became a Dr. Horowitz received a BS in
recognized leader in the aviation Electrical Engineering from City College
community on the design of new collision of New York in 1965, an MS in Electrical
avoidarce systems. He led MITRE Engineering from New York University in
efforts, which initiated the technical 1969.
approach for airborne collision avoidance
systems, currently being established as
a national standard. He also led MITRE
efforts that have developed advanced
enroute ATC automation conc.pts and

11th Annual National Conference on Ada Technology 1993

I Acquisition Panel

I

LTG Alonzo E. Short, Jr.
Director, Defense Information Systems Agency

Manager, National Communications System

Lieutenant General Alonzo E. Short, Jr. planner with the Army Communications
was born in Greenville, NC on 27 Command at Fort Huachuca. He then
Januar; 1939. He grew up in served as Commander of the 3rd Signal
Portsmouth, VA, where he attended I.C. Brigade at Fort Hood, TX.
Norcom High School. General Short The General was then assigned
holds a BS in education from Virginia as the Deputy Commander of the Army
State College and an MS in business Electronics Research and Development
management from New York Institute of Command (ERADCOM), Adelphi, MD,
Technology, Long Island, NY. He also from July 1984 to October 1984.
holds honorary doctorates from Virginia General Short was promoted to
State University and C.H. Mason Brigadier General concurrent with
University, San Diego, CA. His military assuming command of the Information
education includes completion of the Systems Management Activity (ISMA)
Signal Officer Basic and Advanced while at the same time taking over as
Courses, the Armed Forces Staff Program Manager for Army Information
Coilege. the Communications-Electronics Systems, all at Fort Monmouth, NJ. In
Systems Engineer Course, and the Army July, 1986, he became Deputy
War College. Commander of the Informations Systems

Since entering the Army in June of Engineering Command (QSEC), and
1962, General Short has he!d a variety of Commander in September 1987.
assignments with progressively General Short was promoted to
increasing responsibility throughout his Major General when he became
career. Information Systems Command Deputy

In 1975, General Short was Commander on 7 September 1988.
assigned as a staff officer in the Defense General Short then assumed command
Communications Agency (now the of the Information Systems Command in

3 Defense Information Systems Agency). June 1990 and was promoted to
Following that assignment, General Short Lieutenant General at the same time.
was a battalion commander in the 101st In August 1991, General Short
Airborne (Air Assault) Division at Fort became Director, Defense Information
Campbell, KY. Systems Agency/Manager, National

In 1979, he began a tour as a staff Communications System.

!

11th Annual National Conference on Ada Technology 1993 2

,4

Luncheon Speaker

Donald E. Mulllkln
Deputy Program Manager for Advanced Automation, AAP.2A

Federal Avlatlon Administration

Donald Mullikin Is Deputy Program 1984, he was Assistant Deputy Director
Manager for Advanced Automation, AAP- for Defense Intelligence Systems,
2A Over a 20 year period, Dr. Mullikin Washington DC. From June 1973 to
held key technical, program/project April 1984, he was Assistant Manager,
management, and senior management C3 Project Offico, Naval Electronici
positions in the Department of Navy and System, Washington DC. From
the Defense Intelligence Agency. He November 1968 to June 1973, he was
joined the FAA in November of 1984 and Systems Engineer, Command Support
served in several technical and Division, ASW Systems Project Office,
management positions in the Program Washington, DC. From September 1966
EngineerIng Service. He joined the to November 1968, he was Electronics
Advanced Automation Program In June Engineer, Sonar Project Office, Naval
1988. Ship Systems Command, Washington,

Dr. Mullikin holds a BS in DC. From June 1964 to September
Electrical Engineering, an MS In 1968, he was an Engineer Trainee,
Electrical Engineering and PhD. in System Effectiveness Sec'on, Naval
Electrical Engineering. Ship Engineering Center, Washington,

Prior to his current position, Dr. DC. From September 1962 to February
Mullikin was the Assistant 1964, he was an Engineering Assistant,
Manager/Manager, Advanced Automation Data Processing Division, Department of
Systems (AAS) Division, Automation Commerce Bureau of Census, Suittand,
Service, Advanced Automation Program, MD.
FAA, Washington, DC. From July 1987
to July 1988, he was Assistant Manager,
Facilities Integration Division, Program
Engineering Service, FAA, Washington
DC. From November 1984 to July 1987,
Technical Advisor to Director, Program
Engineering and Maintenance Service,
FAA, Washington, DC,

From April 1981 to November

I e noteS eaker

H LTG Peter A. Kind
Director of Information Systems for Command, Control,

Communications and Computers, Office of the Secretary of the Army
Lieutenant General Peter A. Kind Is a native He then served as Commander of the
of Wisconsin. Upon completion of studies at 1st Signal Brigade with concurrent duty as
the University of Wisconsin In 1961, he was the Assistant Chief of Staff, J6, US Forces In
commissioned a Second Lieutenant and Korea and G-6, Eighth US Army; as DirectorIawarded a BS in Economics. He also holds of Combat Development, and as Deputy
a MBA from Harvard University. His military Commanding General and Assistant
education Includes the Basic Officer Course Commandant, US Army Signal Center andIat the Signal School, the Communications School, Fort Gordon, GA. He served as
Officer Course offered at the US Marine Deputy Controller of the NATO Integrated
Corps Amphibious Warfare School, the US Communications System Central Operating
Army Command and General Staff College Authority, NATO's equivalent to the US
and the US Army War College. Defense Communications Systems,

He was assigned to the 97th Signal headquartered at SHAPE, Belgium, and thenIBattalion (Army), 10th Special Forces Group as Program Executive Officer, Command
(Airborne) In Germany and as Signal Advisor Control Systems, Fort Monmouth, NJ.
to the 21st Infantry Division (Air Assault) In He then served as Commanding

jVietnam. General, US Army Signal Center and Fort
-Following duty as Assistant Division Gordon Commandant, US Army Signal

Signal Officer of the 82d Airborne Division School, Fort Gordon, GA and asIand as Executive Officer and S2/S3 Commanding General, US Army Information
-(Intelligence/Operations and Training) for the Systems Command, Fort Huachuca, AZ prior

82d Signal Battalion, Fort Bragg, NC, he to his present assignment as Director of
served In the War Plans Division of the Information Systems for Command, Control,
Office of the Deputy Chief of Staff for Communications and Computers, Office of
Operations and Plans, Hgadquarters, the Secretary of the Army, Washington, DO.
Department of the Army. He commanded General Kind has been awarded the
the 1st Calvary Divislon's 13th Signal Distinguished Service Medal, the Legion of
Batta~ion, Fort Hood, TX and studied at the Merit (with Oak Leaf Cluster), the Bronze
Logistics Management Center's School of Star Medal (with 2 Oak Leaf Clusters), theIManagement Science. General Kind then Meritorious Service Medal (with 2 Oak Leaf
served as Chief of the Concepts and Studies -Clusters), Air Medals, Army Commendation

*Division, Directorate of Combat Medal and Senior Parachutist Badge.
* Developments at the Signal Center pieor to

Army War College attendance.

Keynote Speaker

Gerald W. Ebker
Vice President, IBM

CEO, IBM Federal Systems

Gerald W. Ebker is chairman and chief In 1981, he was named FSD vice
executive office of the IBM Federal president, Defense and Space Systems,
Systems Company. The company was and in 1983 he became FSD vice
formed in March 1992 and is responsible president, Complex Systems. He was
for iBM's operations with the federal named president of the Federal Systems
government. It is one of several IBM Division in January 1987 and became an
companies operating as Independent IBM vice president in February 1988. He
business units. FSC is a major provider was named president of the Systems
of custom systems integration solutions, Integration Division in April 1988 and
services and product offerings to became president of the Federal Sector
government customers. Division in April 1990.

Mr. Ebker joined IBM Federal Mr. Ebker was named to his
Systems Division In 1963 as a present position in March 1992.
programmer on the Apollo space In June 1992, he was elected to
program at IBM Houston. Until 1973, he serve a one-year term as chairman of the
held a number of management positions Armed Forces Communications and
while assigned to the space program. Electronics Association.

From 1973 until 1976, he was Mr. Ebker has a BS in
program manager of the IBM advanced Mathematics from Harding College and a
control system project for automating oil MS in Mathematics from Kansas State
refineries. In 1977, Mr. Ebker was University.
named manager of software systems at
IBM Manassas, and In 1979 became
general manager of FSD's facility in
Gaithersburg, MD.

I
Luncheon Speaker

!

RADM Robert M. Moore
Supply Corps, United States Navy

Commander, Npval Information Systems Management CenterI
Rear Admiral Robert M. Moore is 1979 through 1981. He then served as
Commander, Naval Information Systems Assistant for Program and Budget, AttackI Management Center. His responsibilities Submarine Division, Office of the Deputy
Include Information resources (IR) planning Chief of Naval Operations (Submarine
and policy related to the Department's Warfare).
multibillion dollar Information resources In Julyj 1983, RADM Moore became
budget. Additionally, he oversees IR-related the Vice Commander, Navy Accounting and
programs, Insertion of new technology, and Finance Center, Washington, DC.
acquisition of information resources. In July 1985, he assumed command

A native of San Antonio, TX, he of the Navy Fleet Material Support Office,
received a BS from the University of Texas Mechanicsburg, PA. As the Senior
and a MBA from Harvard University. Executive of the Navy's largest Data

Commissioned In 1961, his early Processing System Development Center, his
tours included ýupply Officer of the duties included direct responsibility for three
Destroyer HYMAN and Instructor at the Navy of the largest Data Processing projects ever
Supply Corps School at Athens, GA. In undertaken in the Federal Sector.
1964 he was selected for duty in the Naval His first tour as a flag officer wat
Nuclear Propulsion Program and in 1966 Competition Advocate General of the Navy.

"I was assigned as the program's contracting RADM Moore was the Assistant Commander
officer at a division of the General Electric for Inventory and Systems Integrity, Naval
Company at Schenectady, NY. Supply Systems Command-from July 1988 to

From 1971 to 1973 RADM Moore June 1991. He was responsible for Navy
served as Director, Nuclear Equipment Programs to upgrade and modernize the

I Support Division at the Navy's Ships Parts Navy Supply Systems which supports the
Control Center, Mechanicsburg, PA, and fleet throughout the world and led the
following this, served a second tour in the program to insure the accuracy and integrity
Naval Nuclear Propulsion Program where he of the Navy's multibillion dollar logistics1 was In charge of Ahe headquarters support inventories.
procurement and new construction budget RADM Moore's military decorations

SIfunctions. Include the Legion of Merit (five awards) and
"* He served as Supply Officer of the the Meritorious Service Medal (two awards).

Submarine Tender HOLLAND at Submarine He is also qualified in submarines.
Refit Site One, Holy Loch, Scotland, from

I/

Acquisition Panel

Moderator: LTG Alonzo E. Short, DISA

Panelists:

I
I

I FAST ANALYTICAL SIMULATION

I OF MISSILE FLIGHTS

Yuh-jeng Lee John V. Waite
Computer Science Departmcnt Pacific Missile Test Center

Naval Postgraduate School Code 1051
Code CS/LE Point Mugu CA 93042

Monterey CA 93943

I
Abstract requirements and increased cost or flight test, m,|issile

We present an air-to-air missile flight simulation flight simulation is receiving more and more attention.

that has been designed and developed using the Missile Flight Simulation
Ada programming language with the object ori- There are three levels of missile flight simulation in
ented methodology. It was aimed at providing terms of cost and complexity:
a test and evaluation method that is more un-
derstandable, modifiable, efficient, and reliable * Real-time hardware-in-the-loop (HIL) simulation in-
than earlier FORTRAN simulations. The prin- tegrates actual missile hardware with special test
ciples of abstraction, information hiding, modu- and instrumentation equipment in a laboratory envi-
larity, high cohesion, and low coupling were used ronment. The simulation software typically runs on
to achieve these goals. The resulting simulation, a high-speed special purpose computer that drives
a three degree-of-freedom model of guided air-to- the test equipment and missile hardware. The real-
air missile, is an accurate mapping of the problem time HIL simulation requires a major development
space into software. The simulation is primarily effort of approximately thirty-five to forty man years

intended to study missile kinematics, and costs from five to ten million dollars1 .
e. The second level of simulation is the all digital six-

degree-of-freedom (6-DOF) missile flight simulation.INTRODUCTION Six-degree-of-freedom indicates that the simulation

The ever increasing cost and complexity of modern computes forces and moments for all three axes. TheI weapon systems forces new demands on the test and 6-DOF simulation- incorporates sophisticated mod-

evaluation (T&E) process. More extensive testing is els for various missile subsystems and runs on a

required with fewer resources. This paper explores one mainframe class computer. The 6-DOF runs many
S aspect of the T&E process as it relates to air-to-air times slower than real-time. For example, an ac-

guided missiles, tual missile flight that might take thirty seconds to

In the early days of missile T&E (circa late 1940s), complete in real-time might take eighteen hours to
missilj. performance capability was determined solely run to completion using a 6-DOF simulation. The
through flight test, that is, actual missile launches. 6-DOF simulation requires a development effort of
The realization that all the T&E data requirements four to six man years.
could not be met with a limited number of launches * The third level of simulation, the main focus of this
led to captive-carry flight test, laboratory testing, and paper, is the fast analytical simulation (FAS). Sim-
simulation to complement the missile launches. To- ulations of this class are a rapid and inexpensive
day's data requirements have grown in response to the tool allowing missile systems analysts to study over-
increased missile sophistication and mission complex- all missile response or capability expeditiously. TheS ity. It is not unusual for a single flight test to cost FAS is a three degree-of-freedom (3-DOF) simula-
more than a million dollars. Due to the increased data tion, usually the forces are computed for all three

I

4'-ý-ý77

axes (the moments are ignored) and a three di- Wildly different results are obtained for slightly differ-
mensional space is represented. Alternately, a 3- ent initial conditions. The real-time HIL simulations
DOF might represent a planar two dimensional view no longer run in real-time. The 6-DOF simulations
where forces acting on two axes are computed while may take days to solve a problem and the 3-DOF FAS
moments are computed about the remaining axis. simulations take hours - what once required hours and
The FAS is intended to be easily accessible via per- minutes respectively. Disk and main-memory capacity
sonal computers to provide results in a timely fash- become issues. What was once a tool enabling scien-
ion. A user enters initial conditions and results are tists and engineers to analyze complex systems has be-
presented within a few minutes. come an unwieldy demanding burden of questionable

value.
Current Practices: Problems and Consequently, they are difficult to understand and
Limitations modify, and inevitably become inefficient and unreli-
Current simulations are usually developed by physi- able.
cists or aerospace engineers (who usually have lit-
tie or no training and knowledge in modern software Motivation and Goals
engineering principles), using the FORTRAN pro- Givent the current situation, what is needed is a
gramming language. Their main goal is "just to get method that more closely represents the problemi
something up and running". The resulting simula- space, allowing simulations to be developed that are
tions are almost always poorly structured and vio- easy to understand and modify.
late most commonly accepted computer programming The major purpose of this project is to explore the
principles. Typical characteristics of these simulations use of object orientedl techniques using the Ada pro-
are: gramming language, in conjunction with contenipo-
* The simulations are monolithic pieces of code using rary software engineering principles, to implement a

mayGOTO statements; missile flight simulation. This simulation should be
many easily understood in a reasonable amount of time and

* most variables are treated as global; readily accommodate change. Additional goals include
* Common data arcas are used for communication be- producing code that is efficient and reliable.

tween subroutines;
* cryptic variable names are used (FORTRAN vari- The Approach

able names are limited to six characters); We have designed and developed a fast analytical sin:-
* the simulations are limited to very simple data struc- ulation (FAS) program, written in Ada, which is aimed

ture (mlti-imesionl aray areusully he ost at providing a reliable and inexpensive tool that al-
ture (mlti-imesionl aray areusully he ost lows missile systems analysts to study overall missile

sophisticated data structures found); response or capability expeditiously. The missile flight
9 programming through side is common; and simulation models a subset of the missile systems (in-
* the simulations have little or no comments or formal cluding the Autopilot, Airframe, and Guidance), the

documentation, kinematics (consisting of the missile dynamics and the

The new analyst will usually require at least six missile-target geometry), and the target. At the tol)
months to gain a basic understanding of how the sim- level view, the simulation computes the forces acting
ulation works, even if he or she has an excellent un- on the missile (e.g., thrust, drag, and gravity) and from

dersandng f misil sytems Anundrstadin of these forces derives accelerations to compute the miis-
therstmuandiong omissciile syrsutes. ane uobnderstandngeo sule's spatial trajectory from launch to target intercept.
theresimulatio is notiucalmo ifrsutore tohe oiintlerpeted By adhering to object-oriented design principles (in-
corerecly ot aisulanotnct ommon tor other jorisnldeaven- cluding abstraction, inheritance, information hiding.
operso anayt rsimltonsil tor moveintoiin othrnbs leaving- modularity, high cohesion and low coupling), the re-
igthe ana ulystsiesonsiblanes frmintaiin ardcind moisy- suit is an accurate mapping of the problem space into
sinleth somulateon. Changwaes inguthelproductiong miens- software. Since the mapping preserves the real world

sue' sotwae orharwar, reulaly ccuringevets, view of the problem, we believe that our simulation
- .must be accurately reflected in the simulation code. pormimreudstnaloifbeficn,

Changes or patches introduced to the simulation code prgamd ispemorbe uhnderlerstandaleNmo ifialeeficint.
invariably make the code more obscure and, more of- addpnal hnerirFRRNsmltos
ten than not, produce undesirable side affects or bugs. O JC -RE T DTC NQ E

* ~~~Debugging these types of problems is incredibly time WT D
consuming and difficult. WT D

After numerous patches have been applied the sim- The goal of object oriented techniques is to produce
ulation software becomes unreliable and inefficient, software that is understandable, easy to modify, effi-

-, 11t A-ia .a - r 4 - - In * -

S cient, reliable, and reusable. Each of these character- Object-Oriented Principles
istics is elaborated below: Through abstraction, information hiding and modular-

Understandability: This is critical to the manage- ity, object oriented techniques encapsulates data and
ment of complex software systems. It is, without a procedural abstractions to form objects. Objects rood-
doubt, the most important factor of a simulation to ularize both information and processing, rather than
the analyst responsible for maintaining the simula- processing alone. Object oriented techniques establish
tion. The software solution (that is, the simulation) a mechanism for (1) a representation of data struc-
should be an accurate model of the real world prob- tures, (2) the specification of process, and (3) the in-
lem. Software can be thought of as being under- vocation procedure. An object is an element of the real
standable on both a micro and macro level. Code world maplped into the software domain. The object

-iat the nmicro level should have a style that is very consists of operations which act on data structures in
readable. At the macro level data structures and al- response to messages sent to that object from other

Sgorithins should be able to be identified as mapping objects. The operations and data structures are hid.
3 from the real world problem space. Understandabil- den, that is the implementation details are unknown:

ity also tends to be tied to the programming lan- to the user of the object. The interfa6' to the olbjec('t
guage used and its richness of expression. is the only portion visible to the user. The interface

is a set of well defined messages that specify what op-
Modifiability: Well designed software should'readily eration on the object is desired. Object oriented tech-

permit change. Modification is usually required due niques can aid sound software engineering principles.
to a change in requirements or to correct to an error. These principles in-lude abstraction, information hid-
Changes in missile simulation code are required to ing, modularity, loose coupling, aid strong Cohe.sifon.
explore new concepts, or as a result of missile hard-
ware or software upgrades. Many changes are not Abstraction. Many of the problems foumnd with th,.
planned. Ideally, changes should not alter the fun- missile flight simulations are due to their complexity.I damental architecture of the software solution. Abstraction is a powerful concept that helps one de.'al

Efficiency: Efficiency is the optimal use of two fun- with complexity. Abstraction concentrates on the es-
damental computer resources - storage space and sential aspects of a problem, while omitting the details.

* execution time. Both of these resources are depen- There may be many levels of abstraction constructed3 dent underlying hardware, yet both resources are when solving a problem. At the top level of a missile
equally dependent on the software. An efficient mis- simulation, abstraction would reveal the essential en-
sile simulation should provide better user response tities - the missile, target, and environment. Moving
and more functionality than an inefficient simula- to the next lower level of abstraction within the, mis-
tion. sile, this level might be thought of as being composed

of various subsystems, such as the seeker, the guid-Reliability: The goal of reliability is to prevent fail- ance section, the autopilot, and the airframe. .lov-
ure, and to some extent, recover from failure in a ing to the next lower level of abstraction, arbitrarily
graceful manner. Failure in a missile simulation choosing the missile seeker for example,. would reveal
might be defined as anything from a program that the data structures and procedures used to model the
crashes to a program that produces results that do seeker. Only the lower levels of abstraction expose thm
not agree with flight test data or produces inconsis- specific details of a solution.
tent results. A reliable missile simulation will pro-
vide results that are consistent with real world ex- Information Hiding. Information hiding conceal-
periences and give meaningful indications when po- the implementation details of a solution that should
tential problems might arise (e.g., limits exceedei or not affect other parts of a system. Through informia-
incorrect user input). tion hiding only the essential aspects of a solution are

Reusability: The goal of reusability is to provide visible, while the implementation details or -how" of i
software components to build software much the solution are hidden. Hiding lowv level design (decisions
same way hardware engineers build circuits from prevento the higher levels of abstraction from being
standard off-the-shelf components. The develop- dependent on implementation details. This approach
ment of software systems can be dramatically re- aids abstraction and increase the modifiability of the-
duced by using software components that have al- solution.
ready been debugged and tested. These components
can form libraries of commonly used objects. Sys- Modularity. The importance of modularity in soft-
tems may be constructed from these libraries. These ware design has been recognized for some time. Ac-

. systems then may be added to the library, cording to Myers 3, "Modularity is the single attribute

I

S11th Annual National Conference on Ada Technolozv 1993 10

- -- ..- " \ _, .- -. -. :. - -a

Sof software that allows a program to be intellectually lem space, map well into the Ada programming Ian-
"manageable." In monolithic software, such as the mis- guage.

* sile simulations, the number of control paths, num-
ber of variables and the overall complexity make un- Ada Packages. The object orienteu philosophy
derstanding difficult. Ideally, software is decomposed maps wedl into the Ada programming language. Ada
into modules along logically and functionally indepen- has a wide set of constructs for providing primitive oh-
dent lines. Modularity supports our notion of abstrac- jects and operations. These constructs serve to build
tion. High-level modules specify "what" is to be done. the implementation level of the objects. Ada's pack-
Low-level modules specify "how" that action is to take aging concept is conceptually similar to objects and
place. provides the means to encapsulate objects. According

to Booch6, "A package is a collection of computational

Cohesion and Coupling. Modules in software sys- resources, which may encapsulate data types, data ob-
toemsicn be thoughtpoflashaving. tod im an t chare - jects, subprograms, tasks or even other packages." AnSterns can be thought of as having two important char- A ap c a ec nit fas cii ai n a d ab d aSacteristics, cohesion and coupling. Cohesion attempts Ada package consists of a spccification and a body0 .
tohaacterizticscoheston watd deungr a odlesn p tems a The specification identifies the information that is visa-to charaterize to what degree a module performs a ble to the user of that package. The package body con-single tains the implementation details of the package whicscohesive module would be one in which the module t an d the remain detally of logicage hid-
performs a single task that requires little or no inter- should (and can) remain physically and logically lid-
action with other modules ir. a program. A module den from the user. The specification and body may be

exhibiting low cohesion would perform many different compiled separately to enforce the separation of tl'.

"",inctions and interact with a large number of other specification or interface from the body with its ima-

modules. Modules that are highly cohesive are easier plementation details. The specification can serve. it

to understand and are more amenable to change than define the messages associated with an object. The

modules exhibiting low cohesion, object responds in the appropriate manner to these

Coupling is measure of interconnection among mod- messages. These messages might map to function or

* ules in a program. Modules with high coupling have a procedure calls and their input or output variables.Si ues n aprogam.Modles ithhig coulin hae aAda packages can be used to provide reusable soft-
complex interfaces and make use of data or control in- Aa pakes can es o povide reusbe of-
formation found in other modules. Modules with low ware components. Packages of commonly required oh-
couplingjects can form libraries where they may be withdrawofonplyg the delatae orscotole informatincpreseantd mand reused. Ada's generic unit feature supports, inuse of only the data or control information presented a limited way, the object oriented principle of inheri-
by the interfaces of other modules. Changes made to tance. A generic package serves as a template for aai
modules with low coupling are less likely to cause un- object. The generic object can then be instantiated
wanted effects in other modules, that is the ripple ef- ojt. t he generic objectc intntite
fect is minimized. Like modules that are highly cohe- with all the features of the generic object, along with

sive, modules with low coupling are easier to under- any additional features required of that particular in-

stand and modify. stantiation. For example, a generic stack or list object
a modiy might be instantiated for each occurrence of a a.fferent

data type, along with the additional capabilities that
Inheritance. Inheritance is an object oriented con- make sense for that particular data type.

S. . .cept that permits the organization, building and reuse
* of software4. In a limited view of this concept, new Methodology. We used an object-oriented develop-

objects may be defined to inherit the capability and ment technique similar to that advocated by Booclhs
functionality of other previously defined objects. The and first proposed by Abbott 8 . The development prc-
new objects may extend the capability and function- cess involves five steps:
ality of the original object by adding new capabilities 1. First, identify the objects and their characteristics
and functionalities. Conversely the new object may or attributes as they exist in the problem space. Of-
be defined to eliminate or limit certain capabilities of ten a concise problem statement is useful in identi-
the original object. Once an object has been devel- fying objects. The nouns of the problem statement
oped, it may be reused with minimal effort through serve to identify potential objects.

Sinheritance, reducing development time. sret dniyptnilojcs
2. The second step is to identify the operations that

Object Oriented Methodology with Ada characterize the behavior of the objects identified
in the first step. These should be meaningful oper-

Object oriented techniques build on sound software ations that can be performed on the object. Verbs
engineering principles to encapsulate data and proce- associated with an object noun in the problem state-
"dures into objects. They capture the real world prob- ment can aid in the identification of meaningful

1 11th Annual National Conference on Ada Technology 1993

I

I operations. During this step time and space con-
straints are formed to define the dynamic behavior
of the objects. The scope and ordering of operations

*i might be defined for example.

3. The third step is to establish the visibility of the
objects with relation to one another.. This step at- Achieved
tempts to specify what objects "see", and what are Accelerations
"seen" by a given object. This serves to map the Autopilot Airframe
l)roblem space into the objects.

4. The fourth step is to define the interfaces to t!;
objects. To do this an object specification is pro-
(duced which -forms the boundary between the out- __ _

*[s~ide view and the inside view of an object." This
maps directly into the Ada package specificationDThma/
construct. Acro Aem

5. The final step is to implement each object by de- Data Dta

signing suitable data structures and algorithms and
to implement the corresponding interface from the
fourth step. Also at this step it is important to re-
main aware of the software engineering prinAiples of Missile
modularity, high cohesion and low coupling. Note Dynamics
that this whole process can be recursive, that is, anobject might further be decomposed into subordi- Commanded

"nate objects. Accelerations
The key point of this method is the accurate map- Initial

ping of the problem space into software. This map- Data
-" ping preserves the real world view of the problem, andI if done properly, tends to produce code thai is eas-

ily understood. Object oriented techniques also lend
Sthemselves well to the software engineering prnciples Guidance

* discussed earlier. Through object oriented techniques Data Missile
and sound software engineering principles, o ir goals Di

of producing a missile flight simulation that is easy to Guidance N- Target
understand, easy to modify, efficient and reliable can Geometry
be realized.

THE PROBLEM SPACE
An air-to-air guided missile is designed to be carried on
an aircraft and launched at an airborne target. After
launching the missile guides, using its sensors, on the
target to intercept. Air-to-air missile sensors may be
radar, infrared or a combination of both types. OnceI the missile detects the target, it tracks and guides on
the target by generating steering commands that will Tprget
set a course to intercept the target. The missile flight
simulation attempts to represent or model the missile
and its environment.

The missile flight simulation models a subset of the
missile systems, the kinematics, and the target. At theI top level view, the simulation computes the forces act-
ing on the missile (e.g., thrust, drag, and gravity) and
from these forces derives accelerations to compute the Figure 1: Missile Flight Simulation

I missile's spatial trajectory from launch to target inter-
cept. Figure 1 is a top-level block diagram of a missile

-I
11th Annual National Conference on Ada Technology 1993 12

, " ; • . ,; ... " _. , ..- ,': , -. • -. ., -

I

flight simulation indicating the relationships of the var- Kinematics H
ious models. The missile subsystems are represented The kinematics model serves two functirns: to corn-
by the Autopilot, Airframe, and Guidance blocks. The pute missile dynamics and to compute the missile-
blocks labeled Missile Dynamics and Missile-Target target geometry. Inputs to the missile dynamics fanc-
Geometry compute the kinematics. The Target block tion are the airframe forces computed in the airframe
here represents a single target, but in most simulations model. From these values, and from initial conditions,more than one target is modeled. The missile airframe the dynamics model derives acceleration, velocity, po-
model, given its achieved accelerations, computes the sition data, and flight-path variables. Angles, angular
forces acting on it for use in the kinematics model. The r ate , and a lerathons represe th e i net lan

kinematics model calcflates missile dynamics and the tities. These inertial quantities simulate the inertial I
missile-target geometry, which is passed to the guid- sensor measurements the missile would experience.
ance model Acceleration commands, which will en- Aerodynamic parameters, such as mach and veloc-

able the missile to intercept the target, are computed ity, are fed back to the airframe model. The derived
by the guic'ance model and provided to the autopi- acceleration, velocity, and position variables are sent
lot. TI'i au~opilot responds wit the achieved acceler- to the missile-target geometry model. The kinem..ti,'sations, which are passed to the airframe model. model also transforms data between the two reference

The Airframe coordinate systems, that is, between the airframe ref-
Teactuates or deflects the control rence system known as the body coordinate system

The missile airframe atl (x,y,z) and the autopilot rel'rence system known ;Ls
surfaces which steer the missile. The missile is mod- the inertial coordinate system (X., Y., Z.).
eled as a rigid body and, as such, body and control The primary purpose of the missile-target geomie-
surface bendings are not represented. The airfrarme is try portion of the kinematics model is to comput , Irepresented in terms of a reference axes system. Timree the missile-target engagement geometry parameters.
force equations describe the forces experienced by the These values are sent to the missile guidance model to
missile along each axis. There is one force equation for steer the missile to the target. Inputs to the missile-
each axis as follows: target geometry model are missile acceleration, ve-

-,F. "m * a. locity, and position data from the missi!e dynamics
"EFl = m * a1 model, and target acceleration, velocity, and position
"lF, = m * a, from the target model. These inputs are used to com- I

These represent Newton's cdassic relation that force E. pute range rate (closing velocity), missile to target
the product of mass and acceleration. Here we resolve range, line-of-sight (LOS) rate, LOS, and time of flight.
the forces into components along each missile axis. The simulation is terminated on range or time con-

These force equations describe the dynamics of the formation is sent to the missile guidance model.airframe. Aerodynamics is the science applied to pre-
dicting these forces. These forces are expanded in Missile Guidance
terms of aerodynamic parameters and coefficients9.
For example, the x-axis equation becomes: The guidance model represents the missile guidance
EF, = m * a. = RP, + (Cd. * aq * S) + (Cd6 * 6 * q * S) law which determines what trajectory will cause themissile to intercept the target. Missile guidance can be

The first term in the above equation is the propul- classified by the type of sensor is used to provide tar-
sion force. The second term is the product of the drag get information. Common sensors are RF (radar), or
coefficient for a given angle of attack (Cd0), the angle infrared (IR). A missile may use a combination of RF
of attack (a), and the missile reference area (S). The and IR seekers. The actual missile guidance section
third term is the product of the drag coefficient Cor is very complex and sophisticated, hence, extremely
a given control surface deflection (Cd6), the control difficult to model. Most simple simulations assume a
surface deflection (6), the aerodynamic pressure (q), perfect guidance section that uses a modified propor-
and the missile reference area (S). The aerodynamic tional guidance law. I
coefficients are a function of angle of attack, control An important parameter in guidance is the line-of-
surface deflection, roll angle and mach number. The sight (LOS). The line-of-sight is the direction the mis-
aerodynamic parameters and forces are provided to sile "looks" in order to "see" the target. This is an
the airframe model by the missile dynamics model, imaginary line from the missile's seeker to the cen- I
and the autopilot model provides the commanded ac- troid of the target. It has been proven that, given
celerations as input. The airframe model computes constant target and missile velocities, if the LOS an-
the forces it is "experiencing" and sends these values gle between the target and the missile remains con-
to the kinematics model. stant an optimum trajectory will be achieved, result-

I
S- 13 11lth Annual National Conference on Ada Technology 1993

, -I " "- i . "

ing in a minimum miss distance'. If the LOS angle is THE SIMULATION
to remain constant then the LOS rate must be zero. The models described in the previous section become
The LOS rate is computed in the guidance section and the Ada objects in the object oriented approach. The
multiplied by the navigation ratio N and sent to the relatione betweea the models are represented by mes-
autopilot as commanded accelerations proportional to sages between the objects. These messages can request
the LOS rate; hence, the term proportional guidance. actions of objects or be in response to message requests

The commanded accelerations will change the mis- for action. Objects may be constructed from other ob-sile velocity relative to the target velocity, driving the jects. For example, a missile is -omposed of objects

LOS rate to zero. The response of the guidance sys- that represent subsystems. This approach results in a
tern is determined by the value chosen for the naviga- simulation that accurately maps the problem space to
tion ratio N. Most modern missiles improve upon the software, as illustrated below.
pure proportional guidance law by using the target re-
lated information available through improved sensors The Control Objects
and increased on board computing power. Target re- At the highest level of abstraction, we wish to keep the
lated parameters used in addition to LOS include tar- simulation independent of the domain of applications.
get range, velocity, acceleration and time to intercept. We might wish to simulate a power plant or nissile -

Given guidance data, the guidance model computes our upper most level should not reflect what partic-

the commanded accelerations required to intercept the ular application we are using. Objects are necessary
target. to control or manage the simulation. By controlling

or managing the simulation we mean things like get-
The Autopilot ting user input, initialization, starting and stopping
The autopilot functions to give the missile stable and the simulation, and presenting data. The objects rec-
controlled flight. The autopilot has its own axes refer- essary for these operations are identified as the FXEC-
ence system (Xa, Y., Z.). The airframe motions about UTIVE, APPLICATION, and USER.INTERFACE.
the autopilot axe3 are controlled by the autopilot. Mo- Each is briefly described below:
tions about the Ya and X&. axes determine missile di- • The EXECUTIVE has no knowledge of what type
rection. The autopilots fc.. these axes are termed the of simulation is running, it just sends a message to
pitch and yaw autopilots, respectively. APPLICATION to initialize the system and a mes-

The autopilot receives commanded accelerations as sage to the USERINTERFACE to turn over control
input and responds with achieved accelerations as out- of the simulation to the user.
put. The achieved acceiea.ations are based on the char-
acteristics of the autopilot and other missile subsys- o The APPLICATION object has the knowledge of

tems. the specific details of the application in terms of
what objects exist and their interfaces. In our sim-

Target ulation, this object is responsible for in.tializing the
system, starting and manipulating the simulation

The target model represents a simple maneuvering tar- operations, and loggi:ag data. It also sends messages
get. Inpi .s are positional, heading, velocity, and type to the MISSILE and TARGET objects, requiring
of maneuver initial condition3. Inertial data are de- them to compute the mathematical derivatives that
rived from this data and output to the missile-target characterize them.
geometry model. More sophisticated target models o The USERINTERFACE object is required for user
might include multiple targets and targets capable of input and output. It allows the user to the user
complex maneuvers, to control the simulation through keyboard input,

along with presenting run-time displays and simula-
The Atmosphere tion status information to the user.
The Earth's atmosphere is a dynamically changing sys-
tem, within which the missile must operate. The pres- The System Objects
sure, density and temperature of the atmosphere de- The system objects includes the missile, launcher, and
pend on altitude, location on the globe, the time of day target objects. The launcher object provides the mis-
and the season. In order to have a common reference sile with launch aircraft information and targets pro-
atmosphere, a standard atmosphere has been defined vides target information.
by the U.S. Air Force 9 . The standard atmosphere gives One of our major software engineering goals, un-
mean values of pressure, density, and temperature as derstandability, is achieved by implementing and dis-
a function of altitude. Most missile flight simulations cussing the core of the simulation in terms of modular
model the standard atmosphere. objects. This approach also serves to accurately map

11th Annual National Conference on Ada Technology 1993 14

I
the real-world problkm space into the objects that form as stand off jammers (SOJs). The major task of TAR-
the software solution. GET is to calculate the targets' position, velocity and

heading angle dependent on target maneuver. Appro-
h priate conditions are checked resultirig in the setiingThe Missile. It includes the following subsystem of flags and the times for the corresponding target ma-

objects: AIRFRAME, AUTOPILOT, RFSEEKER, neuver. Then the build-up time must be considered.
IctiSEEKER, and GUIDANCE. The AIRFRAME The build-up time is the time from the initiation of the [
contains further subsystems such as the AERO and maneuver until the desired number of g's is achieved.

* THRUST. The missile subsystems serve as a good ex- This mode's the real world condition that commanded
ample of abstraction, modularity, low coupling and maneuvers are not achieved instantaneously. The rate
high cohesion. of change of the target's heading is then calculated

The MISSILE object sends messages to establish along with the number of g's the target is experienc-
the missile's physical characteristics (such as mass, ing. The current target heading angle is then com-
drag, thrust, and initial phase of flight), the launch pared with the final desired turn angle. The target
type, number of targets, number of stand off jammers velocity vector and mach are then computed. Finally,
(SOJs), electronic counter measures (ECM) power,and the second target's position is computed based on its

geometric initial conditions (such as ranges and head- geometric relation with the first target.
ing angle). g

The AIRFRAME models the missile's aerodynamic The Support Objects
characteristics and thrust characteristics. it initializes
the propulsion phase and various physica! constants, Modular design and information hiding allow the simu-
computes the missile's coefficient of drag and angle-of- lation to he ma.chine independent. Our simulation was
attack, and provides the thrust force and propulsion developed and inlplemented on an IBM AT compati-
phase. ble machine. However, the simulation can be mod-

The AUTOPILOT accepts commanded accelera- ified to run on other systems. To aid this process,
tions and retarns achieved accelerations dependent on all the machine dependent code is implemented (hid- I
the body responses of the missile, den) in the SYSTEM.SPECIFIC object. Most of this

The function of GUIDANCE is to guide the mis- code is a isociated with the video display. By rewrit-
sile to the target. Simply stated, given missile and ing SYSTEM.SPECIFIC for the other hardware plat-
target position and velocity information, GUIDANCE forms, and keeping the original message names, the I
determines the required acceleration commands for the porting process should consist simply of recompilation
missile to intercept the target. of SYSTEM.SPECIFIC and a link of the simulation.

The missile uses its RF (radar) or IR (infrared) Also by working at a lower system-specific level all

seeker to get information about the target. At longer screen displays are outputt in the most efficient manner

ranges, the missile simply receives the RF energy re- providing very fast screen updates. This prevents the

flected off the target from the launch aircraft's radar. user from perceiving a delay as the screen is updated
At medium ranges, the missile's on-board radar acti- or the next menu is displayed (problems experienced
yates to provide target information. At short ranges, in earlier FORTRAN simulations).

the missile activates its IR seeker to acquire and track Other support objects include (1) INTEGRATION,
the target in the terminal phase of flight, which performs the numerical integration of the MIS-

SILE and TARGET state variables, (2) MATH, which
provides external messages that perform all the ba-

The Launcher. The LAUNCHER object represents sic mathematical operations required by the simula-
the aircraft that carries and launches the missile. It tion, and (3) REAL-MATRIX, which is the generic
provides launch aircraft information (such as velocity object MATRIXANDVECTOR instantiaced for the i
and position, and certain radar characteristics based real data type, and provides a number of messages for
on the launch aircraft type) for use by the missile, operations on matrices and vectors because many of
Other functions include providing the distance from the quantities encountered in the simulation, such as
the launch aircraft to the target and the launch air- forces, are best expressed in terms of vectors or arrays. I
craft's velocity if it is in the pursuit guidance mode.

Object Messages and Implementation

The Target. The TARGETS object models the air- The Ada with clause allows a package (or object) to
craft that the missile is to intercept. The Ada package access or view another package's specification. Pack-
TARGETS is made up of four targets. Two of these age specifications define the interface to the package
targets, target one and target two, are treated as the in terms of data structures, function calls and proce-
primary targets, and targets three and four are treated dure calls available to the users of the package. In our

I
S 15 11t~h Annual National Conference on Ada Technology 1993

I

I object oriented view, package specitfcations define the REFERENCES
external messages that an object can respond to by 1. Eichblatt, E.J., Test and Evaluation of an Air.to-U eliciting some type of action or providing the sender Air RF Guided Missile, Pacific Missile Test Center,
with information. Internal messages are the functions 1 July 1981.
and procedures that are in the body and not in the
package specification, and therefore are for the exclu- 2. Pressman, proS., MSoftare Engineering: A Pran.
sive use of that object. tationer'. Approach McGraw-Hill Book Company,

A detail account of the actual FAS code ,,nd simu- 1987.
lation scenarios can be found in a report by Waite'0 . 3. Myers, G., Composite Structured Design, Van Nord-

strand Inc., 1978.
CONCLUSIONS 4. Cox, B.J., Object Oriented Proqramming: An Evolu-

We have explored using object oriented techniques and tionary Approach, Addison-•,.•ouey Publishing Co.,
software engineering principles in conjunction with the 1987.
Ada programming language to develop a missile flight 5. Booch, G., Software Engineering with Ada, The
simulation. By using these techniques and principles Benjamin/Cummings Publishing Company, Inc.,
the problem space is accurately mapped into software. 1986.
This, along with the principles of abstraction, infor-
,nation hiding, modularity, loose coupling, and strong . Department of Defense, "Reference manual for
,cohesion produced a simulation that is easily under- the Ada programming language", ANSI/MIL-STD-
,tood, modifiable, efficient, and reliable. 1815A, Government Printing Office, Washington,

Although understandability can be very subjective, DC, January 1983.
.ill of the missile analysts who reviewed the simula- 7. Cohen, N.H., Ada as a Second Language, McGraw-
tion agreed that the code is much more easily under- Hill, Inc., 1'-86.
stood than previous FORTRAN versions. Modular- 8. Abbot, R., "Program Design by Informal English.
ity, high cohesion, and loose coupling permitted the Description", Communications of the ACM, 1983.
simulation to be modified in easily. Modules were de-
signed to serve a single purpose and to make use of 9. Anderson, J.D., Introduction to Flight, McGraw-Hill
only the data or control information presented by the Inc., 1987.

I interfaces of other modules. All the interfaces are well 10. Waite, J.V., "An Ada Object Oriented Missile
defined and are standard for that particular module. A Flight Simulation", M.S. Thesis, Naval Postgradu-
good example is the abstraction of themissile airframe ate School, Monterey, California, December 1991.
subsystem. By being modular and having a standard
well defined interface, this subsystem evolved from a THE AUTHORS
program stub to a fairly complex model with mini- Yuh-jeng Lee received his Ph.D. degree in Comn-

mal programming effort. Also by having a standard puter Science from the University of Illinois at Urbana-
well defined interface between objects or modules, a Champaign. He is currently an assistant professor
library of different models can be built to explore dif- at the Naval Postgraduate School. His research in-
ferent missile and target configurations. The simula- terests include knowledge-based and autonomous sys-
tion is simply relinked with the desired module. This tems, intelligent tutoring/training systems, automated
allows a number of different models to be built rel- software construction, and computer simulations. Dr.

- atively quickly. These models then can be used for Lee is a member of the ACM, IEEE Computer Society,
comparison studies. and American Assoiation for Artificial Intelligence.

Through abstraction, information hiding, and mod-
ularity a very efficient user interface was developed.
The simulation has also proven itself to be highly reli- John V. Waite rceived his Master of Science in
able, producing consistent results that agree with mis- Computer Science d~gree from the Naval Postgradu-I ate School. He is cu rrently with U.S. Navy's PacificU sile system expert's predictions. The simulation has aetv
also proven to be quite robust, surviving the most mis- Missile Test Center. _is research interests include soft-
chievous users without crashing. ware engineering, ob ect-oriented programming, and

computer simulations.

ACKNOWLEDGEMENT
We would like to thank Ted Finsold for his help in
providing technical assistance for missile flight simula-

i tions. This research was supported by direct funding
from the Naval Postgraduate School.

I
I 11lth Annual National Conference on Ada Technology 1993 lo

Ada Xpplication Program Interfac to X.400 Protocol Services

Slaw k.
Spwvrhc.be

7926 Jones Branch Driw. Suite 900
MLAEa VA 22102

SXA0 services are used or exclupe of

electronic miK-MqeX, incuding text and other data fkwmas
"is d s Ili n vdi distribnsed mesage handling sI)tems. These servicts

of saftware to implcment AdM Applicatio Propum operate m1h like proJ systems. providkifs wrier.0,-
in,.-rrxccs to X.400s message lh lin services. This da seives. uo*ng multiple store-and-forward point.dcvs'lopment i meke sIt possible to use Ads m a building Delivcry cma be to a uha temiual. to a se's file store. so

block of future mail enabled applications w s ad a facsimile devise, or even n wd thrgh a

1ccive clectronic messages vias X.400 eal e hb ing Coeting physical delivery si

systcms. The ,oftwore amhltccvm" In which these AM To dwi Ada has not had widesprsl use in
am t bo ucd includes (T) de aplication promt trl pado . U

OrSaeS, and (2) ths message landling wryie which Oovanment policy dictaes that Ada mumt be used as thet~~sservelpme. lagug and tdo melrose hmnvcolsk' w
arc provided with a mianliurixod API compatble with C km lmsbe uae wad per tPd is a serbous
language prgrmanming. We report the developme' nt ei teed. er te GOOl. dorit is r semisut
prxcs mid discuss the long.iine impacts and .o the wort rssted remed ts to
lenmed from this devlopment. The impa include a d
sIgnirk-inm reuse potential. TIe lessos mwcam the T X Ae designed 'at
pnvw•ects for complete AdM developments versus API wse Theopjng 4user •ent* (UA) aMrlicsis tha interar
as ini this dvevlopritneiL w ithie X.400 essage headling systems. User agents

mmt red retnieve mesu diing aseons with
m p tgeansfer • a ts*" (MTAs). A on of Ad APIs

Ada Applicatido Proraim Intmerfce (APts) 0o be e)cCAlly awful to ageies da dvlop or

X.400 smervic provide the prxmw inf. ces ad 4M Uqum user agents whose develkjw mum be in Ada
i inkihuo to enable appliod pgr• m to send and ko ma o(omis-in criaaltty.nreuired tut.et.
n uc c iv e X .40 0 e le c tr o ni c m e s s a ge s . T h e d m le o p m e r a o f h e e t d A sA(a t t e p o e t o (t
Ada APs to X.O4 services is modyssed by two X A
ImporaMt mandates o US Ped"mi verwrad 1 i t AM language. The Ada AM
ctmoputing rMd network communtcadost - AdM laguage a defttwof io tsage syaem . hees and dama

one it sofiwa developmene, sad we of Inwrntatvinbjem (i d meuages and tmaie oomponem objects)
Standards OrCilnnhzakm I lnterstial Telegr* ad
T• 'rckib C• C to thos of the YAPA. in order to fartln e

-yvhn Condutuig somis sotarOKoCw i onrs o h
protocols for the exchange of data betweem compuer my bidn g to sftwa e produc this wow wo to the
sysicms. mis lauew mand" r.& wow the Gvrmn X&KA Vwirk m. Themfore. t wed establishes a
Open Systems Interconnection (OS!) PrtIe, 0051•. mJtr bals for softwhre reueo enabllng users to devlo

* -• ,•Arher motivation for Ada APs to netwoea innce I d qfet I Ada tha c tisct wk COTS
-tt drmand for disulbuted arplicasions. Major ones swamp andling component.
"Include electronic mall, tkl emacIns, and ftle
trivooferl.

-. rm I 1POOw wP 4 "1 o

I by placing dhe message on a submission qumee
(3SubmitQ in Figure 1). Once the wieinge has beew

Mj~d ofOMLIw~GO placed on this queue, fte message is under die crinuvi ofI ~do MTA. The MTA may relay the message to a remowe
The X.400 protocol stadards loffne a moe for MTA or may deliver the messag to a local UA. A UA

elecuuinle mail. ns ilustmted by Figure 1. Mwe model maly submit any number of messges during a unsion.
delbi is User Agents (UJAa) and Mssage Týainsfer Agents M~essages must? be retrieved from the MTA by
(MTAs). UAs assist user in composing, submiitting. and tdo Pxivig UA. We n a message is received by the
"Message Trlansf d Sythem allow users to ineatthte M the MTA places the message on a retrieval queueI %of on Tramoret Sytema AnMTA) 7U hMpis submitted (TetieveQ"). The receiving UA. takes resposibility forffon rmom TA AnMAacpsubitd a message, during a session, by removing it from thenies~scs frmUAs for deflivery to other UAs and retrieval queue. The UA may also interact with fth
deli veus to UAs mail received from other MTAs. rerival queue by querying for the number of currentlyI ~available messages or by issuing a *wait* that cau~ses theI ~UA to suspend its processing until a message becomes* I Iavailable.

Once a UA has finished submitting and
retrieving mcssages, the UA may close the session with

MA Utfth MTA. After the session is closed. thie UA may no
longer submit or retrieve messages. Messages that were
in the submission queue when the session was closed are
still sent by the MITA. .Messages in the retrieval queue
and defivery notices can be retrieved when a new session
is opened.

IFigw'e 1. To summarize, the Ada APIs include proccd-Yes
Ada API, in Message Transfer System frtefloig

The Ada APIs provide access to X.400 Message =a a session with the message handling servitxe;ITransfer System (MTS) services. These APIs we d=g the session with the message strvice;
provided as a library of routines that are used by a user'samesgfodliryIapplication code (thorough the use of the Ada "with' submiamesgfre ey

-directive). This combination of user's application code caami a previously submitted deferred delivery
and API libri may be thought of as an X.400 User message:
Agent (UA). where the user code calls upon API services An=cj-rmv esg tmtemreaIto submit and retrieve messages f~rom the Nfl'. Figure I queeacmclremoved ayt message fromethe rumetrieaalso depicts the relationship between the Ada APIs. the qee cesdb h esg eunenme-

-UA and the MTS components. fink-recyaI: replace the message in the retrieval

X.400 P2 is the protocol that prescribes theq. eordsadtemsge
fonnat of messages exchanged between two UM& It AMlZ: obtain the number of messages in the retrievalIInc ludes the message originator, recipient%, subject, tait
body. etc. X.400 P1 is the message formal vied between s&~ await arrival of a message in the retrieval
two MTAs; PI is regarded as an envelope that includes queue;
the P2 messages.

To Interact with an MTA. the UA must frust open
a."esion. A session is a set of message submission and These Ada APIs were designed to meet two
retrieval transactions between a LJA aid an MTA. A UA goals: (1) to make X.400 services accessible to Ada

tubmits a messagt to the MTA for delivery to another UA applications: (2) to provide specific APIs that can be

f-Al

I

easily bound to XAPRA-compliant message handling certain classes (messages, addresses, distiuon lists,
software. By adhering to XAPIA stdards and by using etc.).
XAPIA message handling software (2), these APIS
provide access to X.400 protocol services (1). QbjL¶ Messages are the top-level object: that

ae passed across the APIs. Messages contain other
The Ada APIs and dta objects are compatible objects such as distribution lists. recipient addresses,

with commerial message handling software systems that originator addresses, etc. These objects in turn contain I
adhere to X.400 protocol standards. Therefore, objects for the address components (Country,
applications ushig the Ada APIs can exchange electronic Organization, Surname, etc.). The XAPIA specifies this
mcssages with a wide range of other applications, via level of object definition; moreover, the message objects,
X.-00. so far, are passive and contain only attributes, not

methods. The re-use potential of the object-oriented
The Ada APIs can also be used with non- approach will be realized immediately during the

XAPIA-compliant message handling software, such as the development of mail-enabled applications.
University College London s PP 2. In this case, additional
procedums are needed to work between P's APIs and the Standard routines to manage objects can be used
standard APIs. Figure 2 illustrates the two architectures for both general and special objects as needed by mail
for the use of the Ada APIs to X.400 services. enabled applications. For example, future mail enabled

applications will likely include provisions for audio and
video message parts, in both teleconferencing and non-
real-time use. The object oriented programming
teclisiques will be increasingly useful in future mail

= *k o.,h*.; , enabled applications.

Use of Services from External Software Early
project costraints delayed acquisition of XAPIAcompliant message handling software, Therfore, the
firt: implementation of Ada APIs for X.400 services uses

the publi domain PP message handling software
developed by the University Co~lege London, which in i
tur uses protocol services from ISODE (public domain C I
language implementations of ISO protocols). PP and

Figure 2. Two Architectures for X400 Use ISODE am now supported by the ISODE Consortium.

/Dcclgmt Apmwc Ideally, it will be very simple to bind services
provided by commercial software developeid in
accardAice the XAPIA sp•cifications, to the Ada APIAdsUse To accomplish this development, we softwar, via a small set of intrface xagms.

relied heavily on Ada's support for object oriented Sigificantly, our use of PP, whose APIs are not XAPIA-

programming, including data abstractions and packages. compliant, also shows the use of Ada as the building

We also relied on Ada's prigma interface for access to block between APIs based on the XAPIA specifications I
extcrnally-provided X.400 protcol services (e.g., from b lo b to tp.

Messenger 400 or frm PP). Separate Ada packages

contain the procedures for intericting with the message Test and Demonstrion To exercise and test the
handling service, for defining message objects and for AR&, we developed several simple application programs
managing message objects. da manage objects and exchange them via the APIs.

"these were demonstrated over a local area network. An

Thiis initial ane of Ada to support tomsse Ada application program creates and manages message
handling objects is simplified by the XAPIA's very clean objects, opens and closes sessions with a message
sep;ration of functions and data objects. The XAPIA hudling service provider, submits message objects to it, 3
object specifcations we based u an inernance retrieves message objects, and manages the contents of
hienuehy, but we developed specific objects only for the message retrieval queue. The submitted and retrieved

I
-

' ..r , " / !• ":

I mcssages were exchanged with another Ada application Softwr Engineering Implications
program, via PP message handling services, across the
local area network. Ths work developed software resource

Further Exntdence ed specifically for re-use, with a very high leverage
potentiaL This potential has been confirmed by early

The XAPIA-based approach is currently proving experience in actual re-use. This section will briefly
its re-uso potential, in the development of a ma i-enabled discuss additional implications based on the development
itapr-usepicatio ainthedev n of a mal-eonaedg experience, and based upqon projecting re-use in
application program for teleconferencing. pointil large or critical applications.
Tcleconfmwncing is a much-needed and heavily usedI military comnmad-centcr application. In its current l Lessons
vcrsion3, it is not based on Ada, and it uses a command-

S line interface. Users receive messages from the floor, Copeit Ibis development showed utility of
thrugh a chairman. The mail-enabled teleconferencing development based upon standards, rather than more
uses the Ada APIs to X.400 services to exchange a requrements. Th literal software requiramentsS/ ~~~mc.s•sages betweecn conference participants, and it interacts asrc eurmns h iea otaerqiuet
with eses vetwin c ere icis , were quite bounded and not subject to change during the
with uses via X window servicC5. development. This fact constrained the growth of

SMost teleconferencing applications rely on real- sofware complexity.

time protocols. However, dte performance of prototype Using automated tools, we tracked the following
systems using PP allowed submitted messages to be complexity metricseduring toe development
retrieved within about 1 second by recipients. Therefore,
X.400 services were chosen because they can provide for . Cyclornatic Complexity: the complexity of she

i the other primary needs of a teleconferencing application, program execution graph;
- including basic message delivery, delivery to multiple - Total Operators and Unique Operators (Ada language

recipients (i.e., the teleconference participants), delivery operators, syntactic elements, etc.), and
to conference records, etc. Total Operands and Unique Operands,.

We developed the application based upon the Initial measurements were made on the Ada
* APIs described above, according to the model on the left compiled Program Design Language (PDL) version. The
, hand side of Figure 2. We developed bindings as shown complexity grew subsequently as various interface

in that figure; code for these is simple and short In other methods had to be developed, and as some functions were

words, we were able to reuse the core work of the initial re-implemented inside more than one package. The
* development, but did not reuse the mapping procedures Cyclomatic Complexity grew from 75 to 450Y, the total
U shown in Figure 2. number of operators grew from 8,000 to 10,000, the total

number of operands grew from 500 to 6,000. The number
We used vendor-provided bindings to XView of lines of code grew from 600 to 2,600.

window services to create and manage window objects
In particular, "button" objects cause specified functions to The particular solutions necessary to obtain a
be executed when the button is pressed. For the workable interface and functional translation between the

* teleconferencing application, these functions based on the XAPIA functions and those offered by PP were the
- Ada APIs to X.400 network services to perform message greatest contributors to software complexity.

lhandling services in response to user actions. For
"" 'Iexample, the "Send" button activates a procedure that FaultDm We found that fault identification
collects text from a text window, and then constructs a and repair in the development process worked reasonably
message to the teleconference that uses this text as the well - to enable the software to pass the Formal

"* "Content", and finally invokes the "send" APt. Qualification Tests. The density of faults from this basis
(identified during development and review, and

In summary, the approach of using Ada APIs subsequently corrected prior to Formal Qualification
allowed us to develop an Ada application that makes use Tests) was about 10 faults per 00 lines of code. This is
of up-to-date systems for both message handling and less than might be expected from expertes experience4 -

window management. 20-25 arors per 1,000 lines of code.

I!
"I•

S-/ ', ,~~~~~.v' z / " " " i :,

I

Several advanages worked together against teleconferencing as well. Despite the involvement of the I
faults: stable requirements, stable design, skilled, disk file system, message transfers could be accomplished
intelligent dcvelopment staff, and a test-and- in approximately one second, sufficient for
demonstration covering a lot of execution paths. Had any teleconferencing use. I
of these been absent from the development, it is likelythat significantly mor faults would be experienced. Ada served as the primary building block
Implications for Ftiwre Use throughout the developments described above.

1. it was the basis of mapping between the specified
XAPIA APIs and the APIs for the public domain PPThe above-described development of theI

teleconferencing application can be a useful model for message handling software;
development of mission-crifical command and control 2. it was the basis of message object management
applications in Ada in which software verification is utilities to be used with the message object
important, The APIs allow the application to use services containment hierarchy; and i
of softwAre developed elsewhere; they are essentially 3. it can be the basis of message processing for future
input-output scrvices. The mission-critical functions, mail enabled application themselves.
such as message validation, release subject to
authorizations, authentication of senders, etc., can remain Acknowledgements:
the responsibility of the Ada application. The use of Ada
APIs can significantly reduce the effort needed to verify e a w t acknowledge the work of
the application software as needed for military command Thet Lu, of SAIC, Inc. and of Curt S. Kuhn, and Gordon I
and control applications. . Lee, SPARTA, Inc. for their contributions to the

The suggested model for future developments development of the Ada API software. This work was
sponsored by the Defense Information System Agency,involves stable standards for the API to furnished Defense Any.Teatho r alsoewsheyDefense System Suppor Agency. The author also wishes

services, such as message transfer, retrieval, and window to thaak Mr. George King of that agency for suppor
management. The stable APIs would be a key for the to and eorgement.
widespread use of the services furnished via utility d
software and would free developers and verifiers to References
concentrate on functions essential to the application.

Cocuin tTe Interntional Telegraph and Telephone Consultative I
"Committee, "Liaa Communication Networks

This work is significant because it is one of the Mege Handling Sysems. Recommendations
"first developments for Ada use of the X.400-X.420", 1988.n a
Standards Organization's Open Systems Interconnection 2Kile, S., Implementina X.400 and X.400: The PP and
(OSI) communication protocols. It is now a Federal QTMKIS = (Artech House,BostM, 1991).
Government mandate to acquire OSI cs in new
information systems. 3Worddwide Military Command and Control System

This work demonstrated the use two different (WWMCCS) Standard System Software. See Joint
4 Data Systems Support Center TechnicalX.400 message handling software systms by Aha Memm aT 245.-85, "WWMCCS I

application programs, plus the use of X-wioW services. nem ora (WI)Tle
This experience shows the power of the ue of standard Inteacmuter Network (WIN) Telnet, U

APIs for generic service& Develops can c amcentrwe on Guide.
the functions essential to the application ýnd can ue
gencric services of external or utiWity by means Tof the APls. twi 4Gilb, T., S •iKMik (Winthrop Publishers, Inc.,

Cambridge, MA, 1977), p. 57.
This work also dermonstatwed the potential of

X.400 message handling systems to be used not only for I
mcssage exchange, but for nm-real-time

ZI

-.... :---i . ">~ 7 ., -- J .. y " .

I Author Infornflon

* Dr. Ctmems A. mdzldse, Spaa, Inc., 792S Jows
Branch Drive, Subs 900, McLeUM VA 22102, emfdlk
"IeldridgeftartmccmO. Dr. Eldridge Is Principl System

Analyst wb•o earned a PI. D. In 1976 at Yale Unhvsiy.
He has worked as a software developer and rmee her in
wcientific computing, computer commu*atiom and
related ameas for the pot 16 years. He has also been

i employed by Coma Univerdty, System Development
Corp. and die UMIE Corporation.

I
I

CI

SI

I
I
I
I

iN -. .

I I

ASTRODYNAMICS 101, 1
A CASE STUDY IN ADA OBJECT BASED PROGRAMMING

Roger V.Z. Kovacs I
Graduate Student, University of Colorado at Colorado Springs

AIn training and 60 hours of hands on experience. This
provides a very minimal education of Ada. Completion

A course of studies toward a Masters of of this type of training provides the student with the basic
Engineering, Space Operations was pursued A required understanding of the syntax and little more. I was
prerequisite for this degree is a single programming class fortunate to receive my Ada education in a fast paced
in Ada. This prerequisite was completed at the environme,,t of graduate computer science students. We
University of Denver. taking the graduate level Ada approached the subjects of object philosophy, generics.
sequence. Shortly after completing the Ada curriculum, ,d tasking in a detailed manner as implemented in Ada.
my employer arranged for me to attend an in-house The curriculum for this sequence of classes included the
Object Oriented Analysis class (using the dining philosopher problem using a state machine and i
Shlaer/Mellor[1] methodology). These classes, along arma ,f tastes for each of the objcts. It became an eye
with my work in the aerospace industry, emphasized the opene- r, to the amount of processing that can be
importance of Ada. A personal decision was made to accomplished with so little code.
complete all astrodynamic assignments in Ada and The most common student in an Ada class is an I
develop a reusable library of components. The programs engineer with experience usually in FORTRAN, whose
were developed for the classes in Orbital Mechanics, employer is considering the use of Ada. His/her
Launch & Re-entry, and Astrodynamics. Although Ada engineering discipline may vary but for the most part it is I
is a required prerequisite, I believe that I was the only applied outside of the computer science field. Typical
student out of the 30 or so students in my classes using disciplines are controls, navigation, guidance, or
Ada for the assignments. Other students used C, structures. These engineers leave their work assignments
FORTRAN, and Pascal. While new to Ada, I was able to for a few weeks to receive Ada training. When they
easily keep up with my colleagues, demonstrating that return to #heir jobs, and only when required, they begin
Ada and its various unique features are not difficult to to write in Adatran, Ada that looks exactly like the
learn, nor the cause of schedule delays. This experience FORTRAN that they were previously using. The code I
provides some insight into problems existing in the Ada uses "common blocks*, no generics nor tasks, and is
community. The case study serves as a starting point for usually contained in one package.
others considering the use of Ada in their educational The fault does not lie with these engineers. The
pursuit, as viewed by an engineering student outside of system only provided time for learning a new syntax, not
the computer science discipline. It can be used for a new software engineering methodology. One of the
discussions on the advanced topics of Ada, i.e., how to philosophical goals of Ada is to improve the overall
implement a project, good and bad methodologies, education in software engineering. This case study
limitations, and allowing students to learn from other's attempts to utilize some software engineering training to
attempts. create an Ada software model based on more modemr

techniques and methodologies.

Education
Data is Lackina

For a large corporation to bid on scae
government contracts which require the use of Ada, the Many of the best features in Ada such as generics are
company has to identify its resources including the underutilized due to the fact that standards and literature
number of Ada programmers. The accepted definition of describing how to create a good generic are lacking. I
a trained Ada programmer is 60 hours of classroom While this case study will not establish a standard, it may

-/ - -- . o. c

I

* contribute to the discussions and interests of other The Ada would look like the code fragment in figure 1.
students to review, criticize and improve on the models
developed in this case study. r . NORM (StateData.PoSfloin);

The basic concepts of object oriented v . NORM (StateDAtaVeloV6);
progranmming, seem so abstract when attempting to tackle g.vwc .' (1.0MU)E a problem in astrodynamics, but after many revisions, it '(((V-2 - MUIr) * StateDatLPOStion)
ends up being very logical. -((StateData.Pohdon*St•_Data.Velocfty)

1StU _a..Veo-ty));
A Good Starting Poin

where .Position and .Velocity are arrays, the

This caw study provides a complete working "*" is a dot product between vectors, and a
scalar * vector multiply as overloaded. The "-"

model that can be expanded, modified, corrected, is a subtraction between two vectors, resulting

improved, or discarded completely. However, it can In a Vector.
provide that start necessary for discussion. In addition, it Figure 1, Sample Ada Equation
may provide some reusable components that an
engineering student may find helpful in pursuit of their Limite privates, since they exclude assignment
education. It should provide a challenge to educators and statements, do not permit functions as operations on their

Sstudents to solve the problem in a better way. objects. The above example using limited private types
would have an unnatural look to the engineer forcing the
use of COPY or ASSIGN procedures. However, limitedObiect Oriented Based Design/Code nchudb sdwe
Sprivates do have their place and should be used when

. Not everything in this world is black and white, practical. also gives the engineer the choiceu Inor should the standards on the best way to code. when to make something very "object oriented" or
Software engineering, and engineering in general is a function oriented. Examples are the
process or method used to solve a problem. There may GenericElementaryFunctions[2] and the

" exist an infinite number of possible solutions, but the Generic Linear Functions. The linear functions for
I engineer must decide on one solution which is a cost

effective, safe, and practical solution. This usually example coul ad havri ded very encapsulated privateresuts n acompomie. ne ieceof oneca~vector and matrix types. An engineer would have goneresults in a compromise. One piece of code cannot

necessarily be the do-it-all for every application. Real crazy using the package functions set and get to obtain

time simulation engineers have different requirements individual values from the elements of the vector or
than that of simulation engineers needing to work with matrix. Anticipate the common usage of the component,

or it will be re-written or unused.
engineer Efficiency led to the creation of many similar

not only solve the problem for today, but also for the functions encapsulated into a single package. A good
future. To develop a reusable component, it must be example of this is the gravity model package, "Gravity."

practical, efficient and maintainable.,Thismpenerichsacsage gr a ny model of
I Practicality means ease of use. A complex This generic package contains many different models of
* gtcthe earth's gravitational acceleration. It is expected thatgeneric routine using access types of records just to add onynefthmdlswudvnuaybetizdafr

two numbers would overwhelm anyone, even if it could only one of the models would eventuall be utilized after

be used by anyone for anything needed to be added. The instantiation. This provides the user a selection of

component must first make sense. To make every object fidelity verses speed with little overhead. It would have

a limited private to enforce the highest levels of been possible (and I plan to add one in the near future) to

encapsulation and hiding may not provide a practical write a routine that would have a parameter selecticn as

solution. Ease of use must be considered for the current to the order of the gravity model. This, however, would

and future users. Most engineers prefer to use have caused inefficiencies for the real time user and

assignment statements for their operations so that the Mnimize th reuse.*code looks like the equation in the text book. For Maintainability is the most difficult aspect. The
S exampleif e the followingequation is dhesired: boocode must be written in a familiar form such as the
-example, if the following equation is desired: equivalent to equations in the text books. Documentation

must be maintained along with the code. Object orientedI l _techniques did help provide an expandable set of
=- -)V packages from which to work. It also made for the most

'I

difficult decisions, when attempting to implement a big budget industrial project, but very happy to say it was I
/ different interface/method for a complete generic also provided to an individual trying to complete a

package. For example, it is not necessary to declare a homework assignment.
matrix type just to instantiate the linear functions Other difficulties are cost and capability of I
package if all that is needed was to manipulate vectors, compilers on personal computers. This oAde is not that
Changing the package to a nested implementation where complex, however, most of the "educational" compilers
the matrix was a generic package within the vector cannot compile this code due to *out of memory" type
packaged caused more changes that I had planned. errors. More money had to be spent to purchase an

Unfortunately (or for those in the business upgraded compiler to be able to even compile this code.
fortunately), maintenance is a never ending task, and This code will compile and work well with the R&R
attempting to improve the case study by changing the Software 386-to-DOS Janus Professional Compiler. I
interface/implementation to a different scheme is The style of code written in the Ada classroom
difficult. There is more than one correct way to environment is basically syntax oriented. Code written
implement this code, and perhaps over time the optimal on a project (even if it is just homework) in an object

Swill be discovered, oriented fashion is much different. Deciding the best
"methodology for gluing together generic packages

Validated Compilers requires the engineering work, and not much guidance
exists in the literature. At least for the near future, good I

It is interesting to observe the types of bugs that engineers are required in the code generation process.
exist in some validated compilers. I am convinced that
the validation suite was developed by Atatran coders. The Code
Mos, all of the bugs in the compiler that I have
discovered were from the generic implementation. of Over 60 pages of code resulted from this effort."objects". These errors were not exercised in the Each package was developed to be stand-alone and
validation suite. Some of the choices made during the reusable. I maintain a three ring binder for the
implementation of this case study were due to work- documentation each divider containing one package with
arounds in the compiler, not due to good engineering the requirements, design, code, notes, copies of pages
practices. from text books and other references, test programs and

Examples of compiler bugs are worthy of results. The packages that tie the code together are the
review. I was able to instantiate a generic package to templates which use the package AstroStates as the I
make a function visible. That function would work primary package. Once properly instantiated, the
normally in the routine in which it was instantiated, but I engineer can write application code similar to a MathCad
was unable to pass that function as an generic actual o" Mat.ab program utilizing functions specific to
parameter to another generic package although functions astrodynamics. The advantage is the, capability to
not declared in instantiated packages did pass as compile this code so that it can run real time or faster.
parameters correctly. This initially prevented me from This code is centered around a package called
instantiating a linear function package then passing these AstroStates. This package defines three objects, which
functions as parameters to other generic functions. contain the state information (position and velocity) in i
Another example was the inability to utilize enumeration three different frames of reference: Classical Keplerian
types passed as generic actual parameters. I could not Elements, Earth Centered Inertial (fixed frame) and
"even instantiate TextIO.Enumeration_10 using Flight Path Coordinates (rotating frame). Figure 2 is two
enumeration types due to these generic problems. In code fragments from AstroStates including the private
some cases these enumeration problems passed through part describing the states.
the compiler and prevented linking or just created code These private types have member functions to
errors. Another example was the inability to pass an initialize the states, convert between the states and also
array type which was declared in a generic package as a get data from the states. Two other functions are time of
formal parameter into another generic package. flight between two states, and a ballistic propagation

I felt that I was the only person using function given a time. The package also develops the
enumeration types and generics. However, I was derivatives of the states for use in an integrator.
extremely pleased by the compiler vendor fixing the
problems and sending me a beta copy to continue work.
This is the type of support that would be expected on a

/

, 25 1lth Annual National Conference on Ada Technology 1993i

'" " " -"" " " • l ' -- . ..-- ' -- • - '" " "

'< : generic parameter to the integrator which in turn is used
Package ASTROSTATES Is as a generic function back in the Astro -_States.propagate

"package to permit integration of the state over time. The
typ Index Is (X, Y, Z, - ECI Axes object being integrated is private, allowing the

Roll, Pitch, Yaw, - Body Axes integrators to be used on many different types.
* Vel, Azm, FPA, Long, Lat, Rad, Mass, - FPC Additional generic parameters include specific operations
* a, e, i, RAAN, Arg-Por, TrAnom, -CKE on the type being integrated so that the functions can

'1', '2', 3, '4, '5'; 'T, 7); - Generic implement the processing. Additional features include
an optional adaptable step size on the RK4 integrator to
minimize processing errors. Figure 3 is an example of

n one fragment of the package specification.
private

subtype BCIlIndex Is Index range X .. Z; package Integrators Is
subtype CKE-lndex Is Index range a.. Tr._Anom;
subtype FPCjndex Is Index range Vel .. Mass; IntegrationError: exception;

"I subtype Body-Index Is Index range Roll .. Yaw;

"subtype PositionType Is Vector (BCIIndex);
* subtype VelocityType is Vector (BCl index); generic
* subtype CKEData_Type is Vector (CKE-lndex);

subtype FPCDataTypi is Vector (FPClndex); type Variables is private;
* n subtype Attitude-Type is Vector (Body-index); type Real Is digits o;

subtype Rate-Type Is Vector (BodyIndex); wit function Deriv (X : In Variables;

tye iY: In Real) return Variables Is <o;
7 Posit ypeC with function 0+" (X, Y: in Variables) return Variables is•nPosition : Position-Type; -c

Velcity: VelocityType; with function ""(X: in Real; Y: In Variables) return
Time : Real; Variables is <;

end record;

package Euler istype CKE_3D is record procedure IntegrateEuler
CKEData_Set: CKEData_Type; (YStart :in Variables;
Time :Real; X_Start :in Real;

end record; XEnd : in out Real;

Step-Size : In out Real;"n type FPC_3D is record YaEid : out Variables);
* FPCDataSet: FPCDataType;

GHA : Real; end Euler;
GMT : Real.;:

end record ; Figure 3, Code Fragment from Integrators

Functions that need to be passed as generic

end states; parameters to the Astro States.Derivative package are
end ASTROSTATES: Lift, Drag, Th-ist, and .Gravity. The Lift, Drag, and

Thrust functions have typically been coded in oneFigure 2, Code Fragment from Astro States package called Vehicle.

The Gravity package provides for many gravity
The integrator package currently contains three models including a J2 and J4 model. These functions,

integrators, an Euler, RK4, and a 6th order given a position vector, provide an acceleration vector
predictor/corrector integrator, but will in the future describing the magnitude and direction of *down". Since
contain others. The derivative function is passea as a the earth is not perfectly spherical nor is the density

-n
111th Annual National Conference on Ada Technology 1993 26

// /- */ . ,.

,/.. .•• -.-.

//i

uniform, "down* changes from here to there. This wlth function sqrt (X: In Real) rturn Real Is o; I
results in changes in the orbits of satellites. This package wit function arccos (X : In Real) return Real is o;
allows the user to determine the accuracy, or order, of the
model. The higher the order of the model, the more paa GENERICYECTORJUNCTiONS is

processing time is required. In addition to the existing function "+0 (Ve, ' : In Vector) return Vector,
models work is currently underway to develop a tesseral function . (Vet i : In Vector) return Vector,
and sectorial model (coefficients are available to about a function* (Vec-1, Vec_2: In Vector) return Vector;
50 by 50 model) as a task to run in parallel with the function - (Vec , Vec_2: In Vector) retum Vector;
simulation. The high frequency integrator would use a function - (Scalar In Real ; Vec-l : In Vector) return
J2 or J4 calculation plus a delta being the diffcrence Vector; m
between the JX model and the 50x50 model until the task function "a (Vecl In Vector; Scalar: in Real) return
completes. at which time the delta is updated. Vector;

A linear function package was written as a function or (Vec-l: In Vector; Scalar: In Real) return m
generic with unonstrained array sizes and enumeration Vector;m
types for the index. This permits access to function I (VecJ , Vect_2: In Vector) return Real;
"State Data.Position(X) in the ECI frame for readability. function Dot (Vec_1, Vec.2: In Vector) return Real
This makes the linear function package somewhat more renames I;
complex since, the matrices .-nd vectors don't have simple function *"* (Vecil, Veq_2: In Vector) return Vector;
ranges with which to work. Also the package function Cross (Vecil, Vec. 2: in Vector) return Vector
Generic Linear-Functions has a nested arrangemcnt so renames "*";
that the inner package is: function Angle (Vecl , Vec_2: In Vector) return Real; I
GenericLinearFunctions.GenericVector Functions. function Norm (VecI :In Vector) return Real;
GenericMatrixFunctions. Initially it was coded such function Unit (Vecl: In Vector) return Vector;-x ,•,that a matrix type had to exist in order to use just vector procdur.o Put (VecJl : n Vector) ;
functions. The nesting proved to be an adequate simple

solution so that matrices did not have to exist for vector generic
only processing. Other evolution changes were the tp Matrix is array (Index range o, Index range 0) of I
philosophy to treat the linear functions similar to
transcendental functions as intrinsic, or force the user to Real;

a very strict object oriented philosophy, requiring the pactage GENERICMATRIXFUNCTIONS Is
passing of many functions as parameters to each package. I
The feature of overloading tended to influence me to function Wi" (Matl : In Matrix) return Matrix;
toward an intrinsic implementation, but maintenance and function "-" (Mat1 : In Matrix) return Itrix;
flexibility won out for an object based package. The function "+8 (Matl, Mat_2: In Matrix) return Matrix; I
functions are passed as parameters in generics rather function - (Matl Mat_2: In Matrix) return Matrix;
than the package being "withed" in the implementation. function - (Scalar: In Real ; Matl : in Matrix) return
Plans exist to continue the nested chain and add Matrix;
GenericQuaternion Functions within - the function "a (Matl : In Matrix; Scalar: In Real) return
.GenericMatrixF.unctions package. A code fragment is Matrix;
shown in figure 4. funr n T (Matl I:in Matrix; Scalar: In Real) return

Matrix;
with UNEARFUNCTIONSEXCEPTIONS; function "' (Mat_l: In Matrix;

Vesl : In Vector) return Vector;
package Genedc.._Unear_Func'lons Is function " (MYl : in Matrix;

Mat_2: in Matrix) return Matrix;

W- Pkage Vectors provides functions for the object function Invert (Mati : In Matrx) return Matrix;

"WVctor function Transpose (Matl : In Mabix) return Matrix;
procedure Put (Mat-l : In Matrix);

genweri

Figure 4, Code fragment from
type Index is (go); Geeric..Liner Functions Specification"typ Real Is digits co;

type Vector Is aray (Index range o) of Real;

2

27 I11th Annual National Conference on Ada Technology• 1993

/ ,

- ,... .

I

To work one of the boundary condition problems This code is available to students and eduators

for reentry, quartic root function was required. This by sending a 3 or 5.25 floppy and a SASE to:
3 resulted in a package called Real Roots that has closed Roger Kovacs

form solutions to the Quadratic, Cubic and Quartic 2003 S. Evanston Ct.
functions. Aurora, CO 80014

The vehicle model required atmospher, data to The code is provided for non-profit use, and feedback is
calculate drag, lift and thrust. A package Atmosphere greatly encouraged-
was developed to provide functions for density, altitude,
radius of the earth at given latitudes, mach number and Lessons Learned
other atmospheric data.

The atmosphere model required table lookup, so Determining the object is the most difficult part.
a package Tables was developed to do linear Defining the object once identified is simple. This mustI interpolation on ID and 2D tables. Possible future be an iterative process and should not be constrained by
additions to this would be more exotic interpolation automated tools and processes. A simple change to the
techniques and a binary search, verses the linear search main object may and in many cases cause one to discard

* currently implemented. most all of the previous work. This freedom must be
I The last two miscellaneous packages arc preserved during the first part of a life cycle.

Astro Constants and Transformations. The structure of the program dictates the
Templates were developed for the final interfaces and member functions required. This structure

S applications, see figure 1. The templates instantiate the has to conform to the limitations of the Ada syntax and
* generics in the proper order, allowing the user code to be compiler bugs. Ada 9X will provide more freedom. This

written with'all of the available objects and ra.mber too is an iterative and a learning process. Decisions
functions. One template instantiates the high fid-llity made include package structure, (object and functional).
models and the other instantiates real time models. This Do-all functions may be reusable but in the end
permits the final application to be up and running may never be reused. Careful attention must be paid to

- quickly. Final adjustments can then be made in the all aspects of reuse. Engineering is an art and science
model selection for the application, which develops a solution to a problem. The engineer,

given guidelires, must have the freedom to select the best
T________________ solution. Templates provide the user a better starting
T.•lab point for the reuse of the existing code then justI wiZb K Oak comments. It may not be too apnarent to a future how to

Wfhkqp la glue together the appropriate packages. Modifications
Do prqersenr after it is functional are much easier than figuring out
"Imlmn es G k..Lia=ra.Fvd how to start from scratch. Reuse is the key, a template is• utk• 4tfiam O~a Ve~8r, I good reuse when the general application doesn't change

I I p a.I I] much.

Cne u C4sucVWsr F *u1m. Embedded test functions or separate testI PN1.Pklb) Gmrk_atztYu sz I packages provide a simple way to revalidate changes.
[__________ Most compilers have appropriate switches to eliminate

code that does not link in. This then causes no additional
overhead to the end user and can provide vital
information on the precision and correctness of theI. AMSmPh1]package as executed on variouq platforms.

_____Conclusion

Ada is an excellent language for the
____________development of reusable packages. The extra overhead
Uher AlAUNStm Cob pi ar.i; um: required to use Ada over other languages was not

noticeable. I was able to keep up or ahead of my
colleagues m all of my classes using more of the

Figure 5, Template traditional languages doing the exact same assignments.

11th Annual National Conference on Ada Technology 1993 28

L A,

The mauiyof the cmiessiprvnbut many of FuIture~
the ote agae aea de h eeto fAda
as the language of choice for a particular project is more I .-nvision that in the future, software can be
of an attitude and training issue. Qualiiy of Ada code is developed with a graphics interface similar to current
an experience issue and coding techniques will improve design tools which will use these and other reusable
over time. Many of the individuals coding today in components, and allow the user to graphically connect
industry are engineers of disciplines other than software the generic parameters. When the user has assembled I
or computer science. It may be simple to train them to the reusable components, target code will be generated,
learn Ada syntax, but the larger issue of writing reusable, and Ada will be produced for documentation or transfer
robust, easily maintained, testable, efficient code will be to a different target computer., Software engineers will
difficult. This takes Ada (and software engineering life only be required for developing new reusable components
cycle) experience which takes time. I hope to develop (as well as new and better tools). Just as robotics
over time a balanced blend of two engineering replaced many blue collar workers, I see computers
disciplines. Aerospace and Software, and to be able to replacing many white collar workers. I desire to be part I
apply software discipline to aerospace engineering, of the developing future, not standing back watching it

It was difficult to find literature in libraries to go by.
aid the development of good generic packages, when and___I
where to use private and limited private types and Challene
examples or case studies somewhat larger than a few
lines of code. Once a standard methodology is developed Do it better, and let me know how! I wIl
for aiding in these decisions, Ada will stand out alone in provide copies of the code into the public domain for
the reusable software market. non-profit educational use. After graduation,

This assignment provided me with lessons configuration control and maintenance will be provided
learned that is documented in this case study. for some time. (Unfortunately, it would be an I
Engineering is a decision making process and many of overwhelming task to provide notices of error reports to
these decisions were difficult. More experience will aid all the users, so just write often.) The evolution of this
in the maturity of the code generated. I recognize that code should provide a much better case study than the -

this experience only touches a very small part of a initial release. Let's see what we can all do in a year.
software life cycle. It will take more time to grow and
learn through experience the many techniques and
methods that work and don't work. I will have to see
which modules are really reused, and which ones are
continually rewritten, and for what reasons. ________________

[1) Shlaer, S and Mellor, S., OBJECT LIFECYCLES.
Modeling the World in States, Yourdon Press, 1992

[21 Generic Elementaxyjunctions as proposed by the

SIGAda NuniWG in 1990.

Biography:
Roger Kovacs is a software test engineer at Martin Marietta
Aerospace in Denver, Colorado and is currently completing
a ME, Space Operations at the University of Colorado at
Colorado Springs. He has a BS in Electrical Engineering
Technology from Metropolitan State College of Denver.
The only formal undergraduate software education is a
single class in PDP. I 1 assembly language. Self taught
languages include Pascal, C, C++, and various assembly
languages. Ada was pursued with vigor in a graduate level
class at the University of Denver.

29 11th Annual National Conference on Ada Technology 1993

I

SArchitectural Decomposition of Software Apolications

IKimberiy Reese and Gary Cort
Los Alamos National Laboratory

Los Alamos, New Mexico

I Abstract ing software baselines; peiforming audits
on software development projects; creat-
ing packets of information for review; au-Moderntomating the submission, release, and

assurance necessitates development of certatin of s o nwre leas; and
unique solutions to increasing complexities. certification of software products: gather-

One such solution is the concept of repre- project; and Psressing th e scope and im-

senting software applications in hierarchal
structures such as file list. The benefits of pact of proposed changes to an application.

I the file list are listed in detail.
In order to accomplish these goals, a
mechanism or structure representing the

Introduction architecture of a complex software appli-
cation must be devised and the develop-

Los Alamos National Laboratory Technical .nent of software tools for processing the
Software Management Group employs in- architectural information must be
novative approaches to develop, maintain, implemented. This structure is known to

I and operate software. The Technical Soft- the Technical Software Management
ware Management Group's mission is to Group as a rile list. When the file list is de-
efficiently manage all Los Alamos National fined and the tools required to process it3 Laboratory Yucca Mountain Project soft- are in place, the manageability of software
ware applications. applications will increase and the founda-

tion for the development of other software
With the increasing complexity of software configuration management and software

applications, software components are be- quality assurance tools will be established.
E coming significantly more difficult to

manage. Modern Technical Software
Management and software quality cassur- Software Applications
ance approaches require detailed informa-
tior, regarding the organization and inter- A software application is a collection of
relationships of the components of com- files associated with either a reuse com-
plex software applications. Such informa- ponent or functionally related computertion is invaluable for defining and catalog-

I11th Annual National Conference on Ada Technology 1993 30

programs. These files are divided Into pd- ware design documents, software require-
mary components and support ments specifications or version description
components. The primary components as- documents.
soclated with a particular software applica-
tion are composed of source code mod-
ules and documentation directly related to With such a wide variety of modules for a
the application. For example, primary single software application, to manipulate,
components might consist of functionally manage, and keep track of the software
related computer programs, data sets re- application and its modules mentally or
quired for input to obtain the data sets physically could cause many errors. Op-
required for output, and possibly documen- erating on the software application as a
tation on how to use the program(s). Sup- single entity is a necessary requirement. It
port components of a software application is obvious that an organizational method-
are a group of modules incorporated into a ology is needed to maneuver software
testing product. The testing product con- applications. iThe idea of the file list was
stitutes source code modules and docu- designed to fulfill this by Gary Cort and
mentation that are indirectly related to the Steve Donahue in addition to aid the Tech-
application. Examples of indirectly related nical Softwa're Management Group in
modules are terting files, each related to a managing software applications.
different test of the source code modules,
and documentation, explaining what is be-
ing tested. Source code modules are ei- The le List Approach
ther computer programs or reuse
components. The difference between The
computer programs and reuse compo- e purpose of a file list is to Identiy relat-
nents is that functionally related computer ed compon nts within a software
programs can perform different tasks application. file list is a group of text
Salone whereas reuse components are pro- files. Each gr up is again a file list, which

cedures or functions that cannot stand Identifies collections of functionally related
alone and must be Incorporated into a pro- modules within a software application.
gram to perform a variety of tasks. Com- The file list allows modules to be logically
puter programs and reuse components are associated and controlled as a unit. Thenever combined In the same software file list provides an organized scheme for

application. The software application is all software applications. With an appro-
comprised of modules directly or indirectly pdate orgdnization of the software applica-
related to the computer programs or reuse tion, a hierarchical structure is generated.
components. Documentation shall Incor-
porate significant events of the develop- An entire software application Is represent-
ment of a software application and be doc- ed by a file list(Figure 1). A file list Is an
umented In text files. These text files, or abstract notion which decomposes a soft-
modules, could be user guides, reports, ware application into collections of related
Installation scripts, data set descriptions, files. Each collection of related files is itself
modules and methods summaries, soft- a file list. An Individual file list(Figure 2) is

I/

m a file containing comments and names of There is a one-to-one correspondence be-
interdependent files. Any one of these in- tween PFLs and user programs. Notice in

* terdependent file names may also be a figure 1 that INPUT.PFL and PROCESS.-
name of a file list, representing a cluster of PFL have similar names listed within;
names of interdependent files. INPUT.ADA and PROCESS.ADA. These

are the names of the user programs. 0th-
Each text file, or file list, within the file list or program names listed within, i.e.

* hierarchical structure specifies a compo- LREAD.ADA, are support programs.
nent of the software application. For ex- RFLs specify the components of the pri-
ample, suppose there exists a software mary reuse products provided to the users
application, called "Program." The "Pro- of an application. There is a one-to-one
gram" represents the modules associated correspondence between RFLs and user
with and including the computer programs; packages.
input and process. To convert the soft-
ware application into a file list, Program The support components in the hierarchi-
now becomes PROGRAM.AFL. An Appli- cal structure are the primary Test File
cation File List (AFL) provides the highest Lists(TFLs). The TFLs are major compo-
level view of a-software application nents of the overall testing effort and rep-
hierarchy. It provides references to mod- resent the testing product. The primary
ules that are global to the entire application. Test File Ust shall reference zero or more
The PROGRAM.AFL is a file consosting of Test Suite Test File Lists(TFLs) and Sup-

* the names of the programs; INPUT.PFL port File Lists(SFLs). The primary TFL will
and PROCESS.PFL, the testing product; also reference the verification and valida-
PROGRAM. TFL, software requirements tion report; PROGRAM. VVR, verification
specification; PROGRAM.SRS, and soft- and validation plans and procedures;
ware design documentation; PROGRAM. VVP, andtest results;
PROGRAM.SDD. The architecture of an PROGRAM.TR. Test Suite Test File Lists

* AFL automatically specifies the dependen- and Support File Lists are organized hier-
cy relationships between the primary and archically beneath the primary TFL to re-
support components .. flect the internal structure of the testing

effort. Test Suite TFLs should be listed in
The primary components represent the the primary TFL.. The two test suite TFLs

* Program File Lists (PFLs) or the Reuse listed in figure 1 are INPUTSUITE.TFL
File Usts (RFLs). In figure 1, the Prog-am and PROCESS SUITE. TFL. Suite is an-
file list's primary components are the com- other word for a collection of related files.
puter programs INPUT.PFL and Itemized within are computer programs
PROCESS.PFL. Because the and subprograms that are used for testing.
PROGRAM.AFL contains computer pro- These are only two testing aspects of the
grams, it cannot contain reuse file software application. There can be many
lists(RFLs). PFLs and RFLs are separate Testing Suite TFLs for one program in or-
software applications. PFLs specify the der to verify that the program works cor-
components of the primary software prod- rectly and will not crash. There is no limit
ucts provided to the users of an application, to the number of Test Suite Test File Lists

'I
U

/ •

Agoluq~a ep uo ouaajuo lvo*[3N InuuVq~/

.x~.0
OiL 4Di

cc _1
0L

cc -j 0. 0.0C..F

C, Ed ! c c r

U) 9 ý 0 0 8U M 0.0.O.0.
luxtV/1~~ 6 "'3

1L CL CL Z- 0

crr

R X

I or Support File Lists that may be specified trated in figure 2, the unique name is PRO-
for an application. A TFL at any level may GRAM and type Is AFL. A comment, de-
reference Support File Lists. The one Sup- limited by a hyphen In the left margin,
port File Ust shown is TEST I SORT.SFL. contains explanatory information. This in-
This contains information needed in order formation could be the name of the soft-

Ito run testing in INPUTSUITE.TFL. Sup- ware application, the description of the
port File Lists (SFLs) are summarized software application, or anything related to
"auxiliary programs that provide additional the software application. The comment is
resources (test data, special environ- not processed by any file list operations. It
ments, etc.) for the testing effort. There is a is only needed for user communication. A
one-to-one correspondence of SFLs to specification characterizes a single mod-
support programs. All file lists have a spe- ule in terms of the component's name,
cific format that also aids configuration type, and status. The name is the primary

SImanagement's efforts to regulate software. identification attribute of a specification. It
corresponds exactly to the file name of the

File list structures are made up of entry associated application component on the
lines of information, either comments or host file system. The type is the extension
specifications (Figure 2). The file list struc- of the associated application component.
ture has a unique name and a type. Illus- It corresponds to the type of file it is. In

"Figure 2
I File List

l PROGRAM.AFL

- This is an example of a file list Comment
' I* PROGRAM SRS

• PROGRAM SDD

IINPUT PFL

ISpecification __ LL|

I Status Name Type

"This program application file list is an example of how a rile list is decomposed.

I
I

I.

figure 2 examples of names are PRO- then INPUT_SUITE.TFL. When it reaches
GRAM, INPUT and PROCESS and types INPUT SUITE. TFL, it repeats the process
are SRS, SDD, and PFL. The status spec- again until the entire file list is iterated. The
ifies the change processing status attribute VISITMODIFIED procedure gives the
of an application component through the ability to iterate through only the file names
presence (or absence) of a standard prefix. that have been modified. which means
This attribute may assume one of three that it returns only modified entries. This is
possible values: NEW, MODIFIED, or the same for VISITNEW, and VISITOLD,
OLD. The status of a component is MOD- which return new and old entries I
IFIED (prefix = *), if a currently approved respectively. The PARENTOF function
version is undergoing change. NEW sta- returns the name of the file that the file re-
tus (prefix = **) denotes a module for which sides in. For example, the parent of I
no previous approved version exists. Sta- PROGRAM. VVP, in figure 1, is
ble existing modulesare assigned the OLD POGRAM. TFL, and the parent of
status (no prefix). PPRINT.ADA is PROCESS.PFL. The

ANCESTRYOF function returns the en-
tire list of ancestors not including the file
that the ancestry was to be found of. Forinstance, the ancestry of MAKE DATA

Swould be PROGRAM.AFL/PROGRAM. TFLI
Now that the design has been laid, the INPUT SUITE.TFL/TEST I SORT.SFL.

-. tools to process the file list must be The functions NAME OF, STATUS OF,
implemented. These tools were incorpo- and TYPE, OF, would return the name sta- L
rated into a software package. The tools tus and type respectively. Looking at fig-
included: VISITALL, VISITMODIFIED, ure 2, the name of PROCESS.PFL would
VISITNEW, VISITOLD, PARENTOF, be PROCESS, the status would be NEW,
ANCES TRY_ OF, NAME_ OF, and the type would be PFL.
STATUS OF, and TYPEOF. These tools
allowed Technical Software Management The automation of this information elimi-
Group to efficiently control software appli- Te rutin lenthya inaccuatecations with minimum overhead. nates routine, lengthy, and inaccurate
atnwhiimvhdoperations. These tools supply the data I

necessary for the development of other U
Each tool has a different function. The software configuration management and
VISITALL gave the ability to iterate software quality assurance tools.
through an entire software application(file
list). For instance, VISITALL would start The Benefits of a File List
at the top level, PROGRAM.AFL, and re-

turn one entry at a time, PROGRAM.SRS,
PROGRAM.SDD, and PROGRAM. TFL The file list provides a precise and clear
(from figure 1). When PROGRAM. TFL is understanding of the organization of a soft-
reached , the program then branches off to ware application. The tools used to pro-
iterate through PROGRAM. TFL, returning cess a file list can be employed to obtain
PROGRAM.VVP, PROGRAM.VVR and useful information. For example, a printout i

of a file list can easily supply the directory

!
I

I information to store a software baseline, or
a collection of software components. File list structures also aid in gathering

* ~ *When a very large software project is to be metrics throughout the software project life
Udeveloped, a file list complements the re- cycle. Me'trics aid software configuration

quirements and design document of the management in defining good, reliable
project and clarifies exactly what is to be software. The process of the software is
accomplished. -A file list can be held as a also important. For instance, the number
check list for the physical and functional of lines of code in a software component
requirements of software. For example, if can be used to measure the efficiency of
the developer turns in a baseline, the con- the process. The tedious task, to manually
figuration manager can cross check each count each line of 'code would take many
software component handed in with the file hours and include many human errors.
list. This method assists in tracking com- This task can be automated by the use of
plete and needed to be completed software file list. By automating the process, results

*and documentation. The file list allows will be quick, efficient, and accurate.
assembling and printing of the review
packets of information, which could con-

_ _ ~~tain over a 1,000 different files, to be ____

automated. This process can be easily au- Conclusion
3tomated with the VISIT_-ALL procedure,
*which then would requite only the file list The complexity and magnitude of today's

name to locate, validate and transfer all of software projects necessitates an en-
the files associated with the baseline; hanced, organized, and logical structure,

-therefore, eliminating the tedious effort to rile list. File lists are easy to maintain and
type each flie name, and quickly creating a manage. Using file lists enhances the pro-
more accurate packet of information. cesses of classifying and characterizing

software baselines, verifying the require-
A file list structure is also helpful for soft- ments of software development projects,
ware updates. It would not be beneficial to producing review packets, automating the
release an entire software application with modification of software products, obtain-

3 over a 1,.000 software components to a de- ing measurements, and determining the
Uveloper for updating, when only a few files range of impact of proposed changes. The

need to be modified. A file list allows for file list insures a consistent hierarchical or-
files to be marked effectively, using the ganization for the decomposition of a com-
status; NEW, MODIFIED, and OLD. The plex software application. The automation
tools can be used to ensure that only the of these tools will assure reliable, precise,
necessary files are sent to the developer, and rapid results that will relieve the poor
Since the developer only has access to the soul of the burden to be a slave to the key
software components related to the up- board. The Technical Software Manage-Idate, the configuration manger is still in ment Group at LANL has put the file list in
control of the software application. Main- place and created some of the tools
tamning control of the software application, mentioned. They now work on other tools

is important for greater manageability, that may assist them in reducing tedious

MI' 1 4: - A r .In

I Teaching the Second Course In Computer Science In a Reuse-Based Setting:
A Sequence of Laboratory Assignments In Ada*

I ~Jeff Gray
jgS@cs.wvu.w.vnet.edu

Department of Statistics and Computer Science
West Virginia University

- Morgantown, WV 26506

* ~Correspondence: Marsh Sitaranian - murahi@cs.wvu.wvnet.edu, (304)-293-3607

This research is funded in part by DARPA Grant # DAAL03-92-0-0412 awarded to
West Virginia University and Muskingum College, New Concord, Ohio.

Abstract
We believe these problems can be

We are currently exploring a new approach ameliorated by providing software reuse as a
for introducing key software engineering and context in which to teach the fundamental
computer science principles in the second course principles of computer science. The reuse-based
of our curriculum. Our approach introduces approach also motivates key software engineering.9.>~jsoftware reuse as a context for providing a pr-nciples that are often omitted when the course
motivation toward learning the importance of is taught-outside of this context. The principles
principles such as abstraction, specification and instilled by the lab assignments discussed in this
design. An essential element for the success of paper include:I ~the reuse-based approach is an appropriate series
of lab assignmtnts. First, we present the students -The ability to understand abstract and formal
with components designed and implemented by specifications:~
the lab instructor. Based only on theU specifications, students learn to assemble these -Specification-based component reuse;
components and solve 'interesting problems.
Later, students reuse these components to build -Separation of the specification of a
layered implementations! of other components. component from its implementation;
Only toward fth end of the course are they taught
how to write their own implementations from -Construction of new components by layering
scratch, such as usn pointers. This papa them on top of existing components;
describes th=e lab assignments which ilkutrate
our approach. -Multiple implementations (with different

efficiency characteristics) for a given
1 Intwslnuctiin specification.

WHy m~ach 'wux in an inmndurtnr mimm?~. Introduction to these principles early in
their undergraduate careers will give students

Most current undergraduate computer ample time to gain confidence in their abilities
science curricula suffer from two fundamental by applying the principles throughout their
problems, which often lead to several othems Cne remaining courses. This paper describes an
problem is the absence of a context, and hence approach toward the construction of laboratory
motivation, for learning fundamental principles assignments which attempt to meet the above
of computer science (e.g. abstraction) in the goals. During the past year, such assignments
second course. The other problem is late have been used in a section of the second
exposure to principles of software engineering, semeste freshmen level computer science courseIsuch as those found in a senior level course, at the West Virginia University.
resulting in relatively inexperienced graduates in
applying these principles.

I11th Annual National Conference on Ada Technology 1993 38

Our defoinion of reuse

Recent literature on software reuse
contains several different definitions or 'Me purpose of this laboratory assignment
classifications of the term [6]. The definition of is to solve a backtracking problem iteratively

J"reuse used in this paper is component-based [8, using a stack package provided by the instructor.
11]. We view a reusable component as having Several different backtracking problems have
two distinct elements: a formal specification and been introduced to the students. Examples of
a certifiable implementation of that specification, problems we have used in the past include:
possibly in the form of object code. All
references to reuse discussed in this paper are -- The Eight Queens problem, whereby the

* based only on the specification and performance students must rind all possible combinations
characteristics (e.g. performance efficiency) of the of placing eight queens on a chess board so
implementation. -We concentrate on components that no queen can be attacked by another,
which are designed for reuse and are not concerned
with definitions of the term that deal with code *-Helping a mouse find a piece of cheese by
scavenging or other methods where the moving through a maze which contains dead-
utilization of already existing software occurs by ends,
accident or serendipity.

-Assisting a suirrlin climbing tothe tp of
Organization of the =aer a tree, filled with many empty branches, to

find an acorn.
The paper is contained in five sections.

Sections two through four describe aspects of All of the above problems share a common trait
different laboratory assignments that have been in that a decision must be made to explore down
used to introduce students to software engineering one of several paths. Also, an ability must be
and reuse principles. Each of these sections provided so that one can backtrack to previous
contains the goals, descriptions, and possible spots and choose alternative paths when dead-ends
variations on the theme of a particular lab. The are encountered.
assignments chosen to be discussed in these
sections are only a subset of the total collection The students are asked to solve these
of labs that we have developed but are those problems iteratively using a stack. The
which best exemplify our overall goals. A final specification of an Ada package that provides a
section summarizes the paper and offers stack component is shown in Figure 1. The
suggestions for possible areas of future work. students arc given a copy of this specification and

told how to access the object code version of the
2 Student as client of a reusable body to allow for proper linking. They must

r£Dglncnt construct a client program which utilizes the
stack package to solve the backtracking problem.

C=U The client program is then linked with the stack
package to obtain an executable.-

To eac th folowng rinipls:When the students are given the stack

-The ability to understand formal and abstract component, they are asked to view the
exprssios o a seciicaton;specification as a contract between themselves

and the implementer of the package (i.e. the lab
Specficaionbase comonet rese;instructor). This reinforces the notion that the

- Spcifcaton-bsedcomonen rese;developer and user of a component are often
- The need for separation of the specification of different people. They Pre assured that the stack

a component from its implementation; operations will work correctly provided they
follow the specification. They must surmise on

- Acquaint the students with the notation of a their own, by reading the specification, the
specification language; syntax and meaning of each operation. Thus, the

students get an early example of the importance
Consrucionof econaryopeatins.of providing specification5 which are

unambiguous. To add semantic information to
Adz Package specifications, we use a close dialect
of the RESOLVE specification language [4, 10,

39 11 th Annual National Conference on Ada Technology 1993 --

SI

Il]. RESOLVE specifications are formal, but yet Fin e, and Swap are provided for every type
succinct and understandable by freshmen who
have been briefly exposed to topics covered in generic

S/" discrete mathematics.
type T is limited private;

In Figure 1, the type Stack is modeled as a

methernatical string. Manipulations on a variable with procedure Tjnitialize(X : in out T);
of type Stack are described using functions -- I ensures T.Init(X)
borrowed from mathematical string theory (e.g.
the concatenation operator - "o", found in the with iprocedure TYfinalize(X: in out T);
Push and Pop operations). Operations are
specified using a requires clause (pre-condition) with procedure TSwap(X, N in out T);
and an ensures clause (post-condition). Some -1 ensures (X = #Y) and (Y = #X"
operations may not have a requires clause. These
clauses are mathematical assertions and not package BasicStackTemplate is
executable statements. The requires clause states
what needs to be true before the operation is type Stack is limited private;
called while the ensures clause states what the --I type Stack is modeled by a string of T...

n1 operation will do provided the requires clause is
satisfied at call time. A call to an operation -- standard operations...
without satisfying the requires clause is undefined

- and can do anything. Each reference to a variable procedure Initialize(S : in out Sick);
in the requires clause refers to the value of the -- I ensures S - Lambda
variable at the time the procedure was invoked. In
the ensures clause, however, the value of a procedure Finalize(S : in out Stac:);
variable at the time of procedure invocation is
accessed by preceding the variable name with a '#' procedure Swap(SI, S2 : in out S ,ck);
sign. Reference to a variable without the '#' sign -I ensures (S I = #S2) and (S2 = #S 1)
refers to its vhlue at the time the operation
returns to the caller. Also, since most character -- primary Stack operations...
sets, including ASCII, do not provided symbols
for the universal quantifiers or lambda (i.e. the procedure Push(S in out Stack;
empty string in our specification), we resort to X : in out T);
spelling out the definition of these symbols --I ensures (S = #S oX) and T.Init(X)
rather than giving the symbol itself. Aside from

an explanation of the concatenation operator, procedure Pop(S in out Stack;
which should be familiar to most readers, the X: in out T);
above discussion provides an individual with -l requires S/= Lambda
enough detail to comprehend the meaning of each -l ensures #S = S o X
operation. One can simply view the stack
operitions as manipulations on a string whereby function ls._Empty(S Stack)
calls to the Push operation "consume' an item return Boolean;
and place it at the end of a string (i.e. S = #S o --I ensures Is_Empty iff S = Lambda
X); the returned item is assigned an initial value
depending on the type of the item. Calls to the private
Pop operation remove an item from the end of
the string (i.e. #S n S o X). type Representation;

type Stack Is access Representation;
The BasicStackTemplate has been

designed for reuse by following guidelines such end BasicStackTemplate;
as those in [4]. There are several differences
between specifications designed using these Figure 1
guidelines and other specifications found in Specification of a Stack Component
discussions like [1]. Details of these design
issues are beyond the scope of this paper. An A final requirement of the assignment is
interested reader is referred to [2, 4, 5, 8, 11] for to construct what are termed secondary operations
more detailed descriptions of design issues such for the component. Secondary operations provide
as why standard operations called Initialize, additional functionality in using a particular

1
11lth Annual National Conference on Ada Technology 1993 40

p..

. , #A

\

component. These operations are often not i
included in the list of primary operations due to package SecondaryStackOps Is
die fact that they can be implemented efficiently
without underlying knowledge of the abstract data -- secondary operations...
type representation. To illustuate the difference,
the implementation of the primary stack procedure ReverseStack(S : In out Stack);
operation called Push must have access to the -! ensures S . #SR
underlying representation of a stack in order to
properly add an element. It needs to know procedure Print_Stack(S : In out Stack);
whether the stack is being represented using --I ensures (S = #S) and (output = S)
pointers, arrays, or layered on top of some other
component. However, a secondary operation end SecondaryStackOps;
called Copy-Stack, for instance, does not need
access to the representation and can be written 2
simply using a loop with proper calls to the Specification of a Component for
primary operations Pop and Push, in addition to Secondary Stack Operations
the possible need of temporary variables.S~Variations

The assignment directs the student in
assembling two secondary operations for stacks. As stated above, there are three variations
The operations that the student must write are to the backtracking problem which we have used
ReverseStack and PrinLStack. These operations as laboratory assignments. Similar labs that
are needed in the assignment to print the actual make use of abstract data types other than a stack I
solutions to the problem that the client program could be developed. For example, a lab instructor
discovers. Since the secondary operations require might give the students a queue package and ask
access to various primary operations, the needed them to write a client program that uses the
primary operations must be passed as generic component. They might be asked to use theparameters. An example of how this might be queue to simulate a message passing system
accomplished is found in Figure 2. All the where requests to send and receive messages arem

standard (i.e. Initialize, Finalize, and Swap) and handled and placed on a queue. Alternatively, theyprimary operations of both the element type T might use the queue to simulate a row of tellers
and the Stack type are passed as generic at a bank where each teller has a queue of

meters, customers with individual requests to be serviced.

generic 3 Student as an im,)lementer of a

- Semantic specifications for the following layered component
-- operations are the same as those found in a

-- ==: -Figure 1.-- gure.1. This lab instills the following principles,

type T Is limited private; in addition to those already named in section two:

with procedure TInit(X in out T); - Construction of new components by
with procedure T_Fin(X in out T); layering them on top of existing
with procedure TSwap(X, Y : in out T); components;
with procedure TPrint(X : in out T); -Multiple, plug-compatible,

type Stack Is limited private; implementations (with different
efficiency characteristics) for a given

with procedure Initialize(S : in out Stack); specification.
with procedure Finalize(S in out Stack);
with procedure Swap(R, S in. out Stack); &DCWLWId
with procedure Push(S: in out Stack;
w p dX: in out T); This section describes an assignment that
with procedure Pop(S: in out Stack; is along the same idea as the last section but

X: in out T); offers somewhat of a change in the I
with function IsEmpty(S: In Stack) implementation of the stack package. In this

return Boolean; assignment, the students are given the
specification to a list component shown in

41 l1th Annual National Conference on Ada Technology 1993 I

/1 *:. , . • - ,/.

--I

Figure 3. Implementation details about this As a design principle, functions needed to check
component are hidden but access to the object the requires clause of all operations are also

* code is provided to allow linking. They are then included in the specification (i.e. function
asked to use this component to actually AtRightEnd). The operation Swap.Right will
implement the operations of the stack package not be used in this assignment. It has been
which they have already seen and used. They provided for future assignments that may
must implement the stack operations solely by implement secondary operations since it has been

I making calls to the operations of Figure 3 and found useful in constructing efficient
are not allowed to use any form of pointers or implementations of a Copy-List operation [IIl.
array constructs. Thus, a stack package is

I implemented by layering it on top of another The students have often found that this
component. The lab described in tOe previous assignment can be completed within several
section is reused in this case by re-linking it with hours. Almost all of the required stack operations
the new stack implementation. The assignment that they must write can be implemented with
should assist the students in beginning to think merely one line of code. For example, code to
about how multiple implementations for the implement the Push operation would simply
same specification are constructed (see [9]). Also, entail making the proper call to a corresponding
the ease with which this lab can be completed list operation (i.e. Insert). Similar reasoning
should reinforce the idea of reuse. Students learn follows for the other stack operations provided
that it is often advantageous to make use of pre- the students take care to preserve the FIFO
existing standard components rather than "re- ordering of the stack. A student only needs to
inventing the wheel", understand the specification of the list component

well enough to discern what calls correspond to
The concept used to represent the list similar notions within the stack operations. This

component in Figure 3 is different from the reinforces the concept of specification-based
typical list concept presented in textbooks like component reuse.
[1]. In particular, the abstract idea of lists is
presented without discussing pointers or access generic
types. A type called list is modeled as twoI strings of some other type T. These two string type T Is limited private;
are called, appropriately, "left" and "right". This
view can be better understood if one envisions a with procedure Tjnitialize(X : In out T);
conceptual cursor that separates the two strings. --4 ensures T.Init(X)I" The package provides operations to move this
cursor around the list as well as the ability to with procedure TFinalize(X in out T);
perform insertions and deletions. To illustrate
this notion of a cursor, as it would apply to a with procedure T._Swap(X, Y: In out 7);
f list, examine the following instance of a list --4 ensures (X = #Y) and (Y = #X)
variable called L:-

"package Lists is

3417263 type List is limited private;
I - type List is modeled by a pair of strings of T.

* - named Left and Right
/ :l The value of L.Left would contain the two

elements 3 and 4 while the value of L.Right - standaoperations
would contain the four values 7, 2, 6, and 3. All
insertions and deletions are performed to the right procedure Initialize(L: In out List);
of the cursor. The Reset and Advance operations --I ensure (L.Left = Lambda) andare used to traverse through the list. Using the - (L.Right = Lambda)

t-, above values of list L. a call to the Reset
operation, followed by a call to Remove would procedur Finalize(L: in out List);

Iresult in L now resembling the following:

procedur Swap(Ll, L2: In out List);
-1 ensures LI = #L2) and (L[2= #L1)

I l472 3ii I Figure 3
Specification of a List Component

11th Annual National Conference on Ada Technology 1993 42

r~~~~~~~~ 7:... -• ... ' '

""- .. . " "i ; / :

//

-- primary List operations due to the nccd t) retrieve the clement at the end
of the queue sincc the ordering of thc two data

procedure Rcsct(L: in out List); structures (i.e. FIFO versus LIFO) differs.
--! ensures (L.Left = La mbdia) and

(L.Right = #L.Lcft o #L.Right) 4 Student as an imt2lementer of a
reusable component built

procedure Advance(L: in out List); fromwsLatch
--! requires L.Right /= LUamnbda
--! ensures :
--! (L.Left o L.Right = #L.Left o #L.Right) anti

"*t-! (hereExists x: T, s.t., L.Lcft = #L.Lcft o x) In addition to the principles named in I
function At-RighcEnd(L: in List) sections two and three, this lab introduces thc

tn tRg E turLin Lst n following new concept:, ~return Boolean; [

--! ensures AtRight~End iff L.Right = l)am -- Use of access types to efficiently iirplementi

procedure lnsert(L: in out List; comiponents from-%(ratch.

I-! nsurs (LLcftX: in out T);D
ensures (L.Left = #L.Left) andi

,-! (L.Right = X o #L.Right) and T.lnit(X) This section describes variations to a

procedure Remove(L: in out List; laboratory assignment that is often presented I
toward the end of a semester. It tends to focus

--!rquiresL.RightX mb: inutcmmore on specific details of implementingr-. ensures (L.Left /= L.amtbda components (e.g. using pointers). It builds uponensurs (L.Rg t = Xo#L.Lcft) and the previous two discussions by requiring the-(#L.Right = X o L.ight) students to finally write lower level
' procedure Swap_.Right(Ll: in out List; implementations of the list component. Tie

L2: in out List); stack package will still be layered on top of the
-- !ensures (I.Left = #Ll.Left) and list but in this case the students acquire a feel for

-- en s (L2.Left=#2 #LI.Lf)and using access types to represent unbounded-'(L2.Left = #L2.Lcft) and
--! (L l.Right = #L2.Right) and components.

. ! (L2.Right = #LI.Right) VariationI
private Several possible variations could be

tsuggested toward implementing the list in waystypeL Representation; other than pointers. The list itself could betype List is access Representation; layered upon an already assembled component or

end Lists; the implementation details might opt to focus on
an array based approach. Additionally, rather than

Figure - (cant., concentrating on using a list to construct the
Specification of a List Component stack as in section three, the idea of pointers

could be used to implement the stack directly
, which would allow one to eliminate the need for I

implementing lists altogether. Also, secondary

Although the above description layers a operations for lists could be requested similar to
stack package on top of a pre-existing list those described in the first assignment. Students
component, it is certainly plausible that one might be asked to implement a secondary
caoperation which performs a Copy-List, using the::could also use alternative abstract data types. For primary Swap_Right operation, from one listinstance, the students might be asked to variable to another variable. Correspondingly, the
implement a stack layered upon a deque or a students may be asked to write secondary
standard FIFO queue rather than a list. They also operations for the list package to provide the
could be asked to analyze the efficiency of each
operation in comparison to other strategies. As facilities for printing and reversing lists.
an example using a FIFO queue to build a stack, A iroviso could be added to the I
if the push operation executes in constant time,
then the pop operation must run in linear time assignment which states that all primary

operations need to be written in constant time.

43 11th Annual National Conference on Ada Technology 1993

-. ,---

I

I This would be mentioned in conjunction with a suggestions were always beneficial whenever I
statement reminding them that the implementer found myself at a crossroad.
and client of a component are often differentSindividuals. With this in mind, the students will Selected References
come to realize the need for efficient
implementations since the client will probably 1. Booch, 0., Software Conponents with
decide to rewr'e the component themselves from Ada, Benjamin/Cummings, Menlo Park, CA,
scratch if the component does not meet their 1987.
performance requirements. In this paper we do
not go into any details on hew the list operations 2. Edwards, S., An Approach for Construct .ng
are constructed in constant time but additional Reusable Software Components in Ada, IDA
information on implementing unbounded Paper P-2378, Institute for Defense Analyses,
reusable components can be found in [3]. Alexandria, VA, September 1990.

I Conclusions 3. Hollingsworth, J.E. and Weide, B. W.,
"Engineering 'Unbounded' Reusable Ada

The structure of most current curricula Generics," Proceedings of the Tenth National
tends to introduce the fundamental principles of Conference on Ada Technology, ANCOST, Inc.,
computer science void of any particular context. Arlington, Virginia, February 1992, pp. 82-97.
An introductory course based on a software reuse
setting would assist in providing a needed context 4. Hollingsworth, J.E "Software C",mponenet
to introduce these principles. Early exposure to Design-for-Reuse: A Language hnuependent
these principles would aid students in applying Discipline Applied to Ada", Ph.D. dissertation,
the ideas toward a vast majority of the Deptartment of Computer and Information
programming projects that they would encounter Science, The Ohio State University, Columbus,
throughout the remainder of their undergraduate OH, 1992.

5. Harms, D.E. and Weide, B.W., "Copying and
In this paper we presented one approach Swapping: Influences on the Design of Reusable

toward providing a context for teaching the Software Components", IEEE Transactions on
fundamental principles of computer science. With Software Engineering 17, 5, May 1991, pp. 424-
our approach, laboratory assignments are used to 435.
inculcate the fundamental principles of computer
science whereby software reuse is used as a 6. Krueger, C.W., "Software Reuse", ACM
primary motivator. As examples, a subset of our Computing Surveys, Vol. 24, No. 2, June,
laboratory assignments currently used at the West 1992, pp. 131-184.

I Virginia University were described. These
assignments first require the student to become a 7. Muralidharan, S., and Weide, B. W., "Should
client of reusable components. Later in the Data Abstraction Be Violated to Enhance
semester they are given the opportunity to Software Reuse?," Proceedings of the Eighth
actually implement their own components at a National Conference on Ada Technology,
lower-level (e.g. using pointers). Atlanta, GA, March 1990, pp. 515-524.

There is still much work that needs to be 8. Muralidharan, S. and Weide, B.W., "Reusable
done with the implementation of our approach. Software Components = Formal Specifications +
For example, most of the proposed laboratory Object Code: Some Implications", Third Annual
assignments that were mentioned under the Workshop: Methods and Toois for Reuse,

I Variations sections need to be constructed. We Syracuse, NY, June 1990.
are also currently working toward conducting. a
survey to determine the impact of the reuse-based 9. Sitaraman, M., "A Class of Programming
approach as being applied by previous students in Language Mechanisms to Facilitate Multiple
other courses in our curriculum. Implementations of a Specification", Proceedings

of the 1992 IEEE International Conference on
Acknowledg•ments Computer Languages, San Francisco, CA, April

1991.
I am indebted to my advisor, Murali

Sitaraman, for the help he has offered in
completing this paper. His invaluable

S11th Annual National Conference on Ada Technology 1993 44

-/

10. Sitraman. M., Welch, L.. and Harms.
D.E., *On the Sivcirication of Reuahlc
Software Cm'iponems'. tmierrvional Journal of
S'rof re Engineering and Knowledge
Engineering. 3, June. 1993, to appear.

II. Wcidc, B.W.. Ogden, W.F, and Zwebcn,
S t. "Reusable Software Components",
Advances in Compul-rs. M.C. Tovits,. ed.,
Academic Prce, Vol. 33 (1991). 1-65.

mtagralhx
Jeff Gray can be reached at 1027

Grandview Rd.. Glen Dale, WV. 26018, He
hol&%• a Bachelor of Science (199!) degtce from
West Virginia Univermity and is currently
pursuing the Master of Science degree.

DOMAIN SPECIFIC SOITVARE ARCHITECTURES:

A PROCESS FOR ARCHITECTURE-BASED SOFTWARE ENGINEERING

I Christine Braun
Raymond Coutant

GTE Federal Systems
15000 Conference Center Dr.

Chantilly, VA 22021

James Armitage
GTE Commdnications Systems

Resident Affiliate. Software Engineering Institute
Carnegie Mellon Univcrsity

Pittsburgh, PA 15213

Summr Y by identifying and modifying (if required) existing

,1E is the Command and Control domain contractor components or by specifically creating them.
tor DARPA's Domain Specific Software The existence of a domain-specific architecture and
Architectures program. Thc objective of this program conformant component base will dictate a
is to develop and demonstrate an architecture-driven, significantly differert approach to software
component-based capability for the automated application development. The developer will not wait
generation of command and control (C2) applications, until detailed design or implementation to search fori Such a capab)ility will significantly reduce the cost of reuse opportunities; instead, he/she will be driven by
C2 application development and will lead to the architecture throughout. The architecture arid
improved system quality and reliability through the component base will help define requirements and

* use of proven architectures and components. This allow construction of rapid prototypes. Design will
paper lescribcs GTE's approach to the program, use the architecture as a starting point. Design and
focusing in particular on the domain-specific reuse- development tools will be .automated to "walk
based software lifecycle. through" the architecture and assist the developer in

the selection of appropriate components. The ultimate
The DSSA Concct goal is to significantly automate the generation of

"DSSA is based on the concept of an accepted generic applications. A major DSSA task is to define such a
software architecture for the target domain. As sot lifcycle model and to prototype a
defined by DSSA, a software architecture describes supporting toolset.
the topology of software components, specifics the These activities are accompanied by extensive
component interfaces, and identifies computational interaction with the development community for the
models associated with those components. The target domain, and by technology transition activities.
architecture must apply to a wide range of systems in One aspect of this is that each domain team is working
the chosen domain; thus it must be general and closely with a DoD agency that carries out major
flexible. It must be established with the consensus of developments in the designated area. The GTE team
practitioners in the domain. is working with the US Army Communications and

i Once an architecture is established, components that Electronics Command.

conform to the architecture-i.e., that implement
I elements of its functionality in conformance with its WyCommand and Cont|ol?

interfaces -will be acquired They may be acquired There are many reasons why the command and

I
I

S~I

control domain is an excellent target for DSSA The kinds of commonality in C2 applications are very
technology. It is a high payoff area; command and well-suited to DSSA techniques. In some areas,
control syatcms are needed even in the current components can be reused identically; these can be
military climate. (This is partcularly true when one placed in the DSSA component base and highly I
recognizes that applications such as drug interdiction optimized. In other areas, components will be very
and emergency relief fall within the C2 "umbrella".) similar in nature but differ in the particulars, e.g.,
It is a well-understood area; most of the processing message parsing. These areas are a natural fit to the I
performed in C2 applications is not algorithmically DSSA component generation technology, allowing a
complex. However, C2 applications are very large, table-driven generator to quickly create the needed
and much of this size comes from repeated similar specific component instances. I
"processing-for example, parsing hundreds of types
of messages. In addition to this commonality within GTE's A22roach
applications, there is much commonality across Figure I illustrates GTE's overall approach to the Iapplications. Multiple C2 systems must handle the DSSA program.
same message types, display the same kinds of world
1maps, etc. Initially, project work follows two parallel threads.

i
• l I STARS, I

ARCADIA,mercialDomain Specific other ISMO J Cmeca

C2 Domain Software -fforts Off-The-ShelfKnowledge IILifecycle and I u I (COTS) Tools
I I i Methodology P

oMal "'i Gnerator too I °°basis •
expertise \ Imethodological [I/ '

-- 'C2 Domain • •o~et

SSpecific copnnsOpen Tool
Softwarc . provides support for _ Architecture

[Architecture I supportsI I/
ta ilo re . . . II g e n e ra tio n p f I • ,

S1 I
Shado°w Project -•__-__ Components

I \ Iprovides and LibraryL \ I~uses l

Figure 1. GTE's DSSA ApproachI
____ ___ ____ ___ ___I

I

U

The first is defining a software lifecycle process architecture. Others will be automatically generated
model appropriate to architecture-driven software using APS.

* development and developing a toolset to support tha The DSSA capabiity will be demonstrated by
process. The second is establishing a capability that development of a prototype C2 subsystem, most
implements the process for the command and control likely from the fire support area. An independent
domain, based on a C2 architecture and a set of metrics/validation task will assess the effectiveness of
reusable C2 components. the approach and gather metrics. The methodology

The DSSA process model addresses all aspects of the and toolset will be revised based on findings and
I software life cycle. It describes activities for further necessary research will be identified.

establishing system requirements, developing the rougout the program, a technology transfer task
software system, and sustaining the system after will present results in conferences, papers, seminars,

* delivery. The detailed process model identifies roles and short courses. The George Mason University
of government (e.g., PEOs, PMs), developers, Center for C31 will serve as a focal point for
maintainers, and reuse library organizations in an technology transfer.

I architecture-driven, reuse-based lifecycle.

The DSSA toolset will support all of these activities, DSSA Lifecycle Overview
automating them as far as possible. In particular, it Figure 2 presents an overview of the DSSA lifecycle.

* will automate system development activities by using The shaded boxes in the figure represent architecture
the architecture as a template, guiding the selection of development activities and products. These establish
available reusable components, and automating the the basis for subsequent development of specific
generation of specific required components. The applications in the domain. The domain reference
toolset will be constructed insofar as possible from requirements define the functional and performance
available tools-both commercial products and requirements that characterize systems in the domain.
products of the research community. In particular, it These are then mapped to a reference architecture for
will make use of USC/Information Sciences

Institute's AP5 application generator, DARPA/ the domain-a generic architecture that can be

STARS reuse libraries, and DARPA/Prototech tools. adapted to build specific systems.

Open tool interfaces will be emphasized to minimize Components that conform to the reference
specific tool dependencies, thus making the toolset architecture are then developed and/or acquired and
usable in the widest range of environments cataloged in a reusable component library.

Fundamental to the C2 DSSA capability is the The clear boxes in the figure represent the activities
development of a C2 software architecture. Tlis and products of target system generation. These are

I starts with development of a multi-viewpoint domain the activities in which a developerofa specific system
model, created through interaction with all elements makes use of the architecture products to construct
of the DoD C2 community. Tools/methods used in that system. First, through a process of requirements
modeling include IDEFO, Requirements Driven elicitation, the target system requirements are
Development (RDD), and OMT object modeling, analyzed and expressed in terms of the reference
From this set of models, an object-oriented software requirements model. Then, based on this
architecture is being developed. The architecture will correspondence, the reference architecture is
tie back to the multi-viewpoint model so that instantiated (adapted, filled in, modified as necessary)
mappings to different views of the domain functional to create a design architecture for the specific system
decomposition are apparent. (George Mason to be developed. Components from the library are
University's Center for C31 is playing-a major part in then used to realize the design-i.e., to create the
this modeling and consensus-building activity.) A target system implementation. The design, as it is
base of components conforming to the architecture based on the same architecture that formed the basisI will then be developed. Many of these will be for the component collection, largely automates the
existing components, perhaps modified to fit the component identification/selection process.

I
I

tia~ei

T "c' S Tare t Syte

TA torn,,aTla Syntes

- -~ v- :-i. .ii.•' .

I

Moduel 2 h SALf yl oe

The DSSA framework also establishes a natural basis descriptive terminology used by the Software
for construction of executable prototypes and Engineering Institute's process description project.
simulations. Such prototypes can be constructed from This approach begins by defining process roles and
the reference architecture and library components in agents.
order to help refine requirements and assess DSSA Role
performance. The following sections describe DSSA s
roles and processes in more detail. A role is a uniquely-idendifled class of individuals

based on qualification, skills, or responsibilities that
DSSA Roles and Aeents perform specific activities in the process. In addition

As ar o udestndngth DSAdeelpmntto the traditional software development roles, the I

process, it is important to understand the kinds of SApoesdfnstoewrl:
individuals and organizations that participate in the The Domain Exnent. Ile domain expert is an
process. In this characterization, we adopted individual who has wide experience in applications

I
°.° .I

E that distinguish this domain. 'b be considered an software procedures, as we will note later.
"expert" for this domain, the individual should be able DSSA Apents
to express application requirements in the framework
of a modeling technique intrinsic to the DSSA An agent is an entity that enacts or participates in a
development environment. In addition, the DSSA process. An agent may be an organization orI requirements that are most critical for the domain a designated role within an organization.
expert are those that reflect a complete understanding Domain Manager. The organization managing a
of end user needs. Evaluation of design decisions by family of related systems within a DSSA domain isi the domain expert should reflect the user's referred to as the domain manager. This is the
perspective. organization that will gain directly from the common
Domain experts help define and model the reference technology base of a domain-specific software

I requirements and continue to be a resource for architecture. For example, a military Program
evaluation and enhancement of applications. They Executive Office (PEO) might be a domain manager.
are in communication with and represent the needs of In industry, a business are or program office manager
the end user. Example domain experts might be might be a domain manager. Additional
military requirements developers in organizations responsibilities are to provide direction to program
such as TRADOC. In the commercial world, they managers, control budgets and schedules, and set
might be people in a vendor's marketing organization strategic direction for the evolution and use of the

I who specify what the market wants and set the DSSA environmentTe domain architect's role is
direction for future products. completely incorporated in this organization. The

domain manager also enlists the aid of a domainI An experienced software engineer would not be expert.

considered a domain expert on the strength of

development of applications in the domain alone; he Application Developer. An application developer
or she would need expert knowledge of the end user's may be a contractor, vendor, or government
future as well as present needs. Domain experts most organization that develops new application systems.
likely would have been end users themselves at one This organization must practice a software
time. development process based on the reference model,

e Dreference architecture, and library components. With
The Domain Architect. The domain architect is a the help of a domain expert, the application developer
system/software engineer who has significant builds target systems that are extensions, tailoring, orI experience developing applications in this domain but modifications of the reference requirements and

does not necessarily have the domain expert's architecture.

understanding of user needs. This individual must

have in-depth knowledge of all aspects of the DSSA End User. An end user is an organization that uses the
process and products. Tbgether with the domain system built by the DSSA process. Although the end
expert, the domain architect elicits and models user need not have knowledge of the DSSA
domain requirements. In addition, it is his or her task development environment per se, he or she provides
to transform the reference requirements to a reference important information as to the content of domain
architecture for the DSSA environment. Besides the knowledge, new and changing requirements,
models of the reference requirements, the assets adequacy of documentation, and system

I available to the domain architect would include: effectiveness. User needs are dynamic; static systems
consensus models, component class specifications, become obsolete. Therefore, a domain expert
and reusable components. constantly revises his or her domain knowledge, and

e dend users are a key input to this. Not only applicationsThe domain architect's products are continually but reference requirements and architectures may
evolving through feedback, evaluation, and but refeece end arcinputs.

restructuring of the environment in addition to the need to reflect the end user inputs.

S normal system maintenance functions. Maintenance Lihrary Cente The library center is an organization
is much more complex in DSSA than in traditional responsible for acquiring and maintaining theI

I,

I

domain-specific components and managing the approach increases the operational complexity of this
library. The library center may be in the direct control type of organization. Components requiring
of the domain manager organization or it may be an maintenance may not "belong" to the center, but may
independent, external organization (for example, a come from a reuse library. Furthermore, necessary
STARS or CIM library). The task of this organization changes to reference models and architectures may be
is to provide access to an organized collection of identified. Accounting forthe possible ripple effectof
reusable software components. It classifies and any particular change to the family of systems I
installs components, performs configuration requires analysis. Areas of requirements traceability,
management, and collects usage metrics. It develops testing, and redesign may not follow traditional
strategies for component acquisition and provides procedures. Maintenance is an important I
user services. The library center also coordinates consideration in the design of the DSSA process and
maintenance and enhancement of components, development environment.
whether in response to specific application needs or to I
reflect revisions in reference requirements and The DSSA Process
architecture. We have developed a detailed IDEFO model of the
\laintcnance Center. A maintenance center is an DSSA process. The top level diagram of that model I:':,anization that changes and improves fielded (Figure 3) identifies the major four phases of the

%tems. For example, a Post Deployment Support DSSA life cycle. A description of each phase, with its
.'nter (PDSS) is a maintenance center. The DSSA major process steps, follows.

I
C11

domainknowledge I revis;ons to
architecturen additional components

Eigtablish uref. rcms model &uarch anomalies
; lDomain

domain--'T ' sac"°I "- "- "'-e
ain-~enden|I -- po n I /

tehnloSas caosla-s~s-pecifll I librarian/
teholg developer/

51se exisAung catnfer maintainer
components feedback

11 - •
"-Iand MutntalnIe
,-• Ubr'ry 2• •C -

2/

library requirementsSo~~omponents ..

Sdomain
, 0ntI~eopment nwplicaton 01

environment ne

l [J Operate andi
Maintain
Appin$._

repaired components I4,

Figure 3. The DSSA Process--Top Level

51 11th Annual Nqational Conference on Ada "Technoloav 1993

I Establish Domain-Soeciflc Base architecture each must conform to the a specification
This is the set of activities performed by the dom-,in for that class. Me specification will identify all

iowner , establish a DSSA capability base for the Interfaces and behavioral characteristics on which the

domain. rhe domain is analyzed and a domain-specific rest of the architecture depends.
software architecture (reference architecture) and Tailor Environment to Domail The DSSA process

* development environment are provided. Speoific assumes the existence of a DSSA development
activities are: environment, i.e., a set of tools that support the process

Model Multiple Views. Multiple views of the domain steps described here. The base toolset is domain
are provided by domain experts to ensure that the independent-it can be used to support a DSSA process

broadest range of intrinsic concepts is addressed These for any domain-but several of the tools are tailorable
multiple views may reflect different types of systems orparameterizable based on the reference requirements
within the domain (for example, strategic vs. tactical and architecture. This step creates these tailored
C2 systems), or may reflect different perspectives on Instances of the tools for the domain being addressed.
the domain (for example, that of the soldier in the field Populate and Maintain Library

* vs. that of the strategic planner). These views are This is the set of activities that create and administer the
expressed in a set of domain models, developed using a collection of reusable components that implement the
multiparadigm combination of object-oriented, DSSA. Components meeting the component class

* dynamic, and functional descriptions, specifications in the reference architecture are

S Establish Consensus Model. A consensus of the collected, modified, and/or developed. Specific
generic domain requirements is developed to build a activities are:

- reference requirements model, identifying the Develop Acuisition Strategy The domain architect
functional and performance characteristics of he identifies sources that will provide one or more
S family of systems. This is a model of the reference components meeting the component class---- ! ~requirements that will be the foundation for a family of spciato.Ancqstontregwlle
DSAsses ti n fteky SApout, seiiain.A acquisition strategy will beS DSSA systems: it is one of the key DSSA products, developed to identify components and acquire them.
playing a key role in application development. This Approaches may include:

I activity also establishes common terminology to
describe elements of the domain. Such consensus * use as-is existing components
building will draw on the multiple view models, but 0 reengineer existing components

* will also employ workshops or similar interactions toS help build agreement. build an application generator
0 develop components manually

Allocate Requirements to Reference Architecture. The
reference requirements are allocated to architectural Provide Components. The acquisition strategy is

* elements (i.e., system objects--software or hardware) implemented to provide components conforming to the
to create a reference architecture for the domain. The architecture. If problems arise in doing this--forI reference architecture identifies objects, their example, ambiguities in the class specifications-
interfaces, and their topology. It serves as a basis for feedback must be provided to the domain owner.
design of specific systems in the domain. The Install in DSSA Library. Developed components are

* architecture will continually evolve as new needs arise then installed in the library supportng the domain.
from various sources such as the application developer Depending on whether the library is "owned" by the
or the maintenance center, domain owner or is an independent "public" library,

I Specify Reusable Component Classes. The this interface may differ. If a public library is used, the
architecture defines classes of software objects (for domain owner must be proactive in ensuring that
example,forms manager, message handler) that can be needed components are added to the library andI used to build applications following the architecture. continue to be available, at the same time conforming
Multiple components can be provided to implement to any entrance requirements the library might have. It
each class, varying perhaps in functional, performance, is important to note that library components are not
or platform particulars, but to work with the necessarily code; typically design, documentation, and

1lth Annual National Conference on Ada Technology 1993 52

I

test components will also be provided, reference architecture is adapted to become a part of
Build AvRlications the target system architecture. Design components in

the DSSA library are extracted ts build the design.
This is the set of activities required to build a specific Implement System.
application using the DSSA library and the domain-
specific development environment. Specific activities Creation of the application system implementation
are defined below. (Note that, while names are like (the actual code) follows naturally and automatically
those in the traditional waterfall model, activities are from the preceding steps. As each design element is
quire different.) The DSSA environment will provide chosen, a corresponding library code component is
comprehensive support for this phase, incorporating identified. Where the developer must provide
an intelligent decision support capability that adaptation or "glue" software to connect these
automates each activity, additionally providing a components, the tools identify this need and provide
requirements traceability mechanism and supporting the needed interface specifications. If the toolset
prototyping, evaluation (metrics, etc.) and testing, provides a component generator for the particular
At any step in this process, any deficiencies or needed component class, the developer is automaticallyimprovements in the reference requirements, guided to its user interface, and it is designed to

.irchitecture, or components are fed back to generate only components that conform to the

,sponsible organizations (the domain owner or the architecture.
.brary manager). Operate and Maintain Anplications

DMvelop Requirements. In this step the reference Once built, the application system is operated in the
requirements model is used as a basis for stating the field and maintained by the maintenance center.
requirements for the specifia system to be built (the Specific activities are:
target system). The target system's requirements are Carry Out Aplication The application system is
expressed in terms of the reference model, for deployed and operated in the field.
example:

Assess Effectiveness. As part of its normal operation,
0 parameterized requirements, e.g., the effectiveness of the system is assessed against the

performance measures, are supplied with needs of its continually changing mission. Needed
target system values changes and corrections are identified and reported to

* selections among alternative capabilities are the maintenance center.
made Maintain System. The maintenance center responds

* unneeded capabilities are eliminated to all requests from users for changcs orcorrections to

0 additional detail is supplied as needed the system. This is their traditional role; however the
DSSA approach requires a much different approach to

,The DSSA tools will support this requirements - s--System maintenance than when systems are built
elicitation process, interacting with the designer to independently. An enhancement or correction may
create the target system requirements. Rapid affect documentation, system requirements, library
prototyping can easily and naturally be included to components, and eventually reference requirements
help clarify requirement distinctions. and architecture. Some of these types of components

Design Avplication System. The reference may not be under maintenance control of the
architecture is then instantiated and particularized to maintenance center. For example, library
establish a design architecture for the target system. components may be maintzined by the library
This process is guided by the mapping from the organization, and the reference requirements and
reference requirements to the target system architecture may be maintained by the domain owner.
requirements, and in fact occurs concurrently with Further, changes to these entities will potentially
that activity. As each requirement is specialized for impact more than the o,,e application system that
the target system, the corresponding element of the requested the change. A close working relationship

53 11th Annual National Conference on Ada Technology 1993

E between the domain owner and the maintenance explore the limits of what is possible in tooling to
center is critical to the success of this activity, support the process.

I Imvlications and Future DirclQns Acknowledment

DSSA promises a real revolution in the way we build The work described in this paper has been supportd
Ssoftware. However, as this brief overview indicates, by the Defense Advance Research Projects Agency

the DSSA process will impact significantly the roles through U.S. Army Communications-Electronics
and responsibilities of all organizations involved in Command Contract No. DAAB07-92-C-Q502.I •the creation and support of software. This creates a
challenge to the industry overall, but meeting this References
challenge must start with the DSSA teams. It is [1] Armitage, James, "Process Guide for the
essential that we develop a process that is: DSSA Process Life Cycle," PD-081i DSSA-

* clearly defined and described PG-001 Rev. 0.1, Software Engineering

0 comprehensi,,,--addresses all elements nstitute, 10/92.
impacted by the change [2] Braun, Christine, Raymond Coutant, and

0 practically realizable with today's resources Jorge Rodriguez, "DSSA Process Model",
GTE working paper, 1992.

aceppted by prti ts i[31 Braun, Christine, W. Hatch, T.
* accepted by participants in the process Ruegsegger, B. Balzer, M. Feather, N.

* The process model describecd in this paper (and in Goldman, and D. Wile, "Domain Specific
more detail in the referenced materials) is a beginning Software Architectures- Command and
at meeting these needs, but it is only a beginning. The Control", Proceedings of 1992 IEEES model will evolve as we gain experience on the Symposium on Computer-Aided Control
project as the first practitioners of DSSA, and as we System Design, Napa, CA, March 1992.

I
I
I
I
I
I
I
I
i 11th Annual National Conference on Ada Technology 1993 54

17 ------------

I

I
DOMAIN ENGINEERING:

Establishing Large-Scale, Systematic Software Reuse

William R. Stewart William G. Vitaletti

SofTech, Inc.
Alexandria, VA

Abstract: Domain Engineering is a collection of maximize benefits, the software reuse process requires
activities (Domain Identification, Domain Analysis. planning and methodical integration into the software
Domain Design, Domain Implementation) that development life-cycle (SDLC).
provide generic requirements and designs for a given
domain (family of systems or common system service). Employing a domain analysis and design process is I
These, in turn, are tailorable to a particular system one of several existing approaches to effectively
based on differing factors such as mission, site, identify commonality and engineer systems for reuse'.
environment, new technology, and user needs. The In general, domain analysis and design is the
products ideally contain the knowledge base of the systematic exploration of related software systems to
domain and include reuse guidance incorporating discover anW ploit commonalities; to produce a set
rationale, alternatives discarded, and lessons learned, of commo7 ,pabilities, processes and data for a

"family", .; ass of systems; to represent and model
Keywords: Domain analysis, domain design, reuse, commonalaics in a usable form; and to provide a
systematic, opportunistic, components, object- method 'o map commonality to specific reuse
oriented, commonalities, adaptation, generic instances. The primary objectives of domain analysis 1
requirements, generic design, DSSA, and generic and design are to understand the domain, to support
architecture. user-developer communication, to provide reuse

requirements, and to develop products that support
implemeitation of new applications3. By applying

I INTRODUCTION domain analysis modeling techniques and designing
generic architectures, engineering activities focus

Software reuse is widely recognized by industry and primarily on developing a set of common 1
government alike as a primary mechanism to combat requirements and exploiting adaptable architecture(s)
today's software crisis. Many experts insist that for a "family" of systems (hereafter referred to as a
software reuse is an effective means to increase domain). I
software development and maintenance productivity,
leads to greater quality and more reliable software,
and can preserve software engineering expertise'. 1.1 TyPes of Software Reuse
Although increased productivity is often cited as a
key reason to practice software reuse, the most Software reuse doesn't just happen, it must be
significant benefits may come from increased integrated into the SDLC. Many software industry

reliability and lower software maintenance costs. leaders have adopted either an opportunistic or a 1
However, even with the potential to yield higher-level systematic approach to developing reusable software.
software productivity gains and demonstrated results Opportunistic (sometimes icforvd to as ad hoc) reuse
of several reuse case studies, there still remain many has been practiced for years in an unstructured
barriers to reuse. To overcome these barriers and manner by those sharing code modules. The potential

I
55 11th Annual National Conference on Ada Technology 1993 1

I benefits of this software parts-based approach to
*software engineering are vignificant, but they are 1.2.1 Problem Spsg.. In traditional

*base!d on assumptions that a given domain exhibits system software development, problems are
significant commonality. Commonalities are then formulated and defined as requirements for specific

*exploited through the development and application of software systems (or parts of systems). Domain
reusable software components or parts. In this analysis identifies and models the problem space for
approach, reuse benefits are achieved only at the a "family" of systems (domain), and provides reusable

Ucomponent or part level, requirements to address recurring problems in the
domain. The problem space defines common

In order to realize greater productivity gains, which capabilities within the domain, as well as associatedIare needed to overcome the software crisis, a variations and combinations. It is essential to define
systematic approach to reuse is most useful. This domain capabilities to be effective, flexible and
type of approach is formalized at more than an ad remain viable over changes in technology, time,Ihoc, code-sharing level. Structured, repeatable needs, people and budget. To support these changms
methods are employed to focus on emerging problem space requirements, must be adaptable and
technological software engineering activities, such as understandable.

* domain analysis and design, to maximize the benefits
:'Uof reuse. Domain analysis is a methodical proccss, or Domain models are developed as abstract

set of activities, used to acquire and model an representations of systems existing in the domain
*understanding of the domain and the specifications and/or futurt domain requirements. These abstract

common to systems within the domain. Domain domain representations serve as models for
design activities use the domain model and constructing future systems. The interpretation of
specifications to develop generic domain designs as domain models is flexible and allows alternative
configurable or adaptable frameworks for con~structing realizations to accomplish different needs.
new systems in the domain. Reusable software
components that implement domain specifications are
then acquired and/or developed for next generation 1.2.2 Solution Space. Domain designIsystem development. New development efforts in the focuses on the solution space where solutions take the
domain can reuse domain specifications, instantiate form of design and other artifacts that together

*domain design(s) and reuse the associated lower-level constitute a framework to address the problems in the
implementation components, thus realizing far greater domain. Domain design applies system problem
benefits of reuse. solving to construct a generic, adaptable design that
* satisfies domain requirements. This generic design

serves as the basis for the system software design
1.2 Problem Space vs. Solution Spare activities. During system software design, a software

architecture that exploits the implementation
The domain problem space is the set of requirements dependencies of the target environmrent is constructed.I that future systems in the domain will need. The
Jomnain solution spar~e represents tie implementation Domain architectures allow the developer to create
of the problem. Successful reuse requires the robust language-independent solutions satisfying thoseIdeveloper to match a current set of problems (system requirements, without concern for low the software
requirements) to previous solutions. The design will be impl-mented. This preliminary, logical
and/or implementation of the previous requirement design is the developmental bridge between tie
can then be adapted as A solution to the current problem domain and the software implementation or
problem. Domain engineering provides a systematic solution space. The resulting problem domain and
approach that concentrates specifically on defining solution space mapping is essential to effectively
problems and producing adaptable solutions in a maximize the benefits of software reuse,
domain in order to increase productivity in future
system development activities'. This process, which

mcomplemients and facilitates system development, is 1.2.3 Increased Benefits. There is
an essential part of an effective, reuse-based potentially a much greater return on investment by
development methodology, employing a systematic reuse-based approach and

I11th Annual National Conference on Ada Technology 1993 56

• I
applying the domain analysis and generic architecture 1. Domain Identification
design techniques described in this paper. For
instance, if requirements for developing a new system 2. Domain Analysis
match (to a certain degree) an existing domain model,
it may be more feasible to adapt the corresponding 3. Domain Design
domain design and reuse large portions of associated
existing system components, such as detailed 4. Domain Implementation'
design{:' and code. I

As in standard software development, various life-

This paper presents one method of domain mnodeling cycles are possible, from waterfall to spiral to
and generic architecture design. and includes essential incremental.
activities in conducting the domain analysis and
design process to enable software reuse and maximize The products of domain engineering relate to the
the associated ben,,fits. application life-cycle as shown in Figure 1. The

domain models, from which the generic requirements
are generated, are composed of graphical

2-0 DOMAIN ENGINEERING LIFE-CYCLE representations and object specifications. The I
architectures are composed of generic designs.

Domain engineering is the process by which all After completion, the domdin products are placed in
domain products are created. The four major activities reuse repositories for accessibility.
of domain engineering are:

ISII

I

/ I

Figure 1. Integration of Domain Engineering and Applica'lon Engineering Life-Cycles.I

Domain implementation is basically the application of well-known coding and/or re-engineering prinviples and. I
therefore, will not be covered within this paper.

I
S 57 llth Annual National Conference on Ada Technology 1993 1

/o

Too an Ine

T IT

I

I 21 Method Overview in light of emerging domain engineering needs.

As in the practice of standard software analysis and The detailed examples provided herein to demonstrate
design, several domain analysis methods exist at the concepts were derived from: 1) The U.S. Army
present time. In order to classify and combine Reuse Center (Software Development Center -
common system/software capabilities, the method Washirngtorn) Program Executive Office - Standard

I presented in this paper is a completely object-oriented Army Management Information Systems (PEO-
approach. This approach was adopted for several STAMIS) retail supply domain analysis effort; 2)
reasons: information from other supply systems

documentation; and 3) ongoing methodI1. Object-oriented methods provide inherent enhancements. For this paper, the information has
constructs for identifying commonality been greatly simplified for purposes of demonstration
(classes), variability (subclasses) and and should therefore be considered in the light of
cardinality (instance connections), concept communication only.

2. Traceability is established on an object
basis from requirements through code. 2.2 Domain Identlfli atloj
Every object in the requirements phase has
one or more objects in the design and Before an analysis of a domain can. hegin, a domain
implementation phase. must be defined. The first consideration in domain

definition is the orientation of the domain in
3. The transition from object-oriented question. The domain orientation is either vertical or

analysis (OOA) to object-oriented design horizontal. If the reuse projected involves a family
is greatly simplified. "Because of th, of related systems, it is said to be a vertical domain'".
difference in aggregation principles, If the reuse projected involves a segment of many
proceeding from a structured analysis to families of systems, it is said to be a horizontal
an object-oriented design can be awkward, domain (see Figure 2). A mission-specific domain
Since the criteria for grouping functions (e.g., Radar-Guided Missiles or Logistics) rends to be
are different in the two methods, the vertical and a system support donain (e.g., COTS

i transition from one to the other may bindings, GUls, Communications, or Data Base
require significant recasting of the data interfaces) tends to be horizontal.
flow diagrams. This is a laborious process,
which can be avoided by assuming an la order to understand the extent of the dcmain
object-oriented viewpoint during the engineering effort, the boundary must be established.
analysis phase".' The boundary identifies the characteristics that are

used to classify systems as part of a specific domain.
4. During the construction of an object, both As a high-level example, the Patriot Missile Sysiem

during analysis and design, changes within belongs to a Radar Guided Missile domain and the
an object will have little or no ripple Sidewinder (infra-red guided) does not.
effect in other objects, allowing the
information clustering to proceed without
extensive revisiting of related objer*s. Example:

U Although many existing systems have been developed Under the PEO-STAMIS domain analysis effort,
with functional or hybrid methuds, the information approximately 26 systems were identified as
clustering necessary to identify commonality requires candidate PEO-STAMIS systems. During this effo't,

* a complete information restructuring. the fundamental capabilities of these systems were
assessed to identify similarities. Organizational

The specific graphical techniques currently employed entities were examined to identify responsibilities.
in. this process are Coad/Yourdon analysis notation' The results in Figure 3 portray the domain
and Buhr '90 design notation$. Several other analysis organization of PEO-STAMIS. The Supply domain
and design notations are presently being considered was chosen from the domains in PEO-STAMIS in

-lth Annual National Conference on Ada Technology 1993 58

i*

I !

.~itA4 / oo "'," \ z
-7,-

Figure 2. Domain Orientation (Horizontal va. Vertical)

oider to utilize the wealth of available information
and to satiaty the needs ot'upxoming Supply systems. L2Daan~kjil/ yz•ll

The reuse potential discovered included both 'The objective of domain analysis is to identify,
horirontal an vertical reuse. ior the saea of brevity, derive, organire. abstrsv:t. and represen! thc hbody of

this paper will focus on vertic'al reuse. The -knowledge of a par~t•lcula domain' This bodly cit

boundaries of the domain analysis were drawn around knowledge is represented by a 40~a,,m,,.'de,. a
the systems that had supply responsihilities (see model similar to an ()bjec~t Orienied requiternents

Figure 3). Analysis (X)OA). The difference heiv, rn a &li•i•sin
mod1el and an ()A ar the addhtions in the di#yaaw

In gleneral, the FtO$TAMIS Supply Domain consints model of reuse ruidance in the foria of adl)puai
of log utiics zysems that provide thheifundamental requoirementsahernauivesdiscarded.vriina!le Iuns
capabilty to supply cuatomers with the assets learted, and idetnif.aticin of systems sip|lyiriU ie

requie red to tacop ish overespective missionst Tonsbemingi the dofmain pranults This tnfoidmanin
Cuhromers and customer needs may vary at diffebrent the key to prgavidn the esti a andtremaiiont oee~te.1 of

ebhelon levels w thedo in tarmyss w rawiranuinal knonwetrdes requ prements fobmny utue a stems The
sthUcture. sy e syatems at the brigade, battalion, d(main mo del psovidls Inpat to anth the doitnln

company echelon, for eample, the Anusaolyrs may e designer and the ipptis ati m bt•waren anal on!

tmokael cotmWmanders, Wheteas. stouimefl at tde
theaters corp and divsitom erhelos may be ho' or

pOol mechanics or intermediate supply points,

IPEO-ST AMI

Lo 1 i . Personnel

* [~Maintenance Transporato

SAMS1 SI: 1A 3 .. SO'; Mon OAMMS MPM
.SAM S2 -SAA !34 5510% H 0AMMS-R

* SAS 3SAA7 OA) D,'tf D AMMS-R2

SASARI;% ýA U~t ui S;A
SAWV;% ?R U1 Y; S4 Sel atd ISM belong to

mriuttipte dom~a'ns

i-iguro 3. PEO.STAMIS Supply Domain Boundaries.

Dimfferent domain analysts methods varv in their goals iadaptation requirements often ta~keti place c Rih time

a; to the depth Of tnfiwroittion to model. [or a commnonality is disc'overed,
essmiple. the Software Frigireering Institutes [eaitureI Orievited D)omain Analysis dFODA) aims at capturing
user-visiible asipectst of the problem sipace as a meant; ~L..1~~t~g.ahrng.n
of identifyinog utter requitrements Additionally, other QLgAnlzaIJ~an During this step. the domnain anarii'~I methods inm lude all oif the problem qp~ice aspects in acquire Information, at s minimum, in the formi of
the domiain modiel as mneans of "tissemlinating system documents, planning/concept documents and
knoiiiledge among engineer% as a way oif Improving initial domain expert interviciiii. Thim IntlformtionlIthe development process,. becomesi the bastis for a working doinamt k,, lerfw(rf

base. 11d% knowledge base will be used throughout
Ylie pomirny stmpps of domain analysis are: the donmain analysis and design activities beore the

completed products are formally certified and

L Infornmtion Gathering and Organiration. installed in the reuse repositoitry. Ideally, ill
significant Information will he Included in the

2. Commonality Identification. tv rtified domain products. The tvpe% of Information
to fios (in ate those that % iU have tome tMPAk I (ni

I Adaptation Identifification, and fiture srystemst. Obsoalete or out-dated information is

not maintained in the. domain model. although
4 biiii Modltf- Verifit muon knowledge of the amount and rate of ot,%lirtk uik e

carn help determine the stability oif a domain
Dihe elt st 4 an tv jlvii-floyedIn %irip cieni e, Although
eviperence hat sthovn that itefratifni anl piroduse The kniawledigp hawe rieeil An orgnts.iation.alI g~~re Ater drtail and thilrs aiiin vtir tw iii r r ing structure, R Apid access to paniirul Ar Stoupings (it

ireus potiientutl 1141wmsmiA1n1 t10HII) insitil I0 h domain infiornmation requires an indelting tat the

iiWiin,11*1Ito nmint0i i4-ileniiti atmon, at vivile inforiniation am cordinit to the type of intormait-orI ~ ,ý 6th iar 1 mity telereent # whtile pkitil iit olomi twededl ai. (luirteu te g .sy, stein document vs, titcr'Nme
tim bu'tpfd in lii' ralyw. etiur ff luer m t il 1t1ion o)(i111iilete v1 future neced).

format. If the corresponding design

23.2 .tC n ltyIdanO MIj.n. In employed OOD methods, identification of
order to establish a basis for commonality problem space objects in the design can

identification, an entity-relationship model is also be useful to the domain analysis
constructed (unless one is available from a business process. This constitutes a reverse

improvement initiative effort). Commonality engineering of the design. The analyst

identification determines, to a large part, the amount must, however, be alert to avoid

of reuse Potential to be realized from the domain intrcducing solution space information
engineering effort. The common information' can be into the problem space and remain focused
in the form of objects, classes, functions, processes, on only the problem space objects found
entities, relationships, data elements, and so forth, in the design.
What is searched for is not necessarily exact matches,
but similarities. Commonality can'be identified in a As in object-oriented analysis, commonalities are

number of ways: generalized into classes that represent abstractioiis of
their respective set of objects. This process is not

I. Identification by Domain FA,'erts -.Such strictly top-down (i.e. without regard for existing

as system users, functional proponents, assets) in nature, nor is it purely bottom-up (i.e..
commanders. and other related individuals basing analysis only on existing assets). The goal is

that have had to work with and understand to satisfy future requirements with as many existing

the problem domain in question. Their assets as practicable.
knowledge of repeated processes and data
manipulation algorithms is extremely The commonality identification progression does not
valuable. Different types and levels (i.e., just proceed from the high level of abstraction to the
skill area, rank) of domain experts have lowest. Instead. there is a sinusoidal "porpoising"
different perspectives that allow multiple effect as new information discovered in the lower
perspectives of commonality, levels of detail affect parent classes/objects. There is

an iterative shaping of the classes as new similarities

2. Examination of Analysis Documentation - are discovered.
All information in the form of software
engineering data, such as object diagrams
(interaction, inheritance, aggregation, etc). 2.3.3 Adaptatlon ldentiflcatiQ.1.
data flow diagrams. state transition Adaptation requirements identify the different
diagrams, and data models, are necessary application of the common capabilities. Just as
souces for the modeling of the commonality identification is necessary to establish a

requirements of the domain. As discussed grounds for reuse, adaptation identification is

in CAMP 3", software components can necessary to tailor the information to particular needs.
exist at different levels of abstraction. We Some adaptation factors" are:
may find similarities at the smallest I
component level, at a Computer Software I. Flexibility in operation.
Component (CSC) level, or at an i
architectural level. Often, the sarie 2. Mission adaption (needs,. threats. etc.
information is represented with diiferent

formats, terminology, and in different 3. Environment/site adaptation.groupings.
4. Platform adaptation.

3, Examination of DIoti.u Documentation .

Design documentatlon portraying previous 5, User adaptation, and 1
ystemn solutions can provide commonality

information through the stuldy of the use 6, New technology adaptation.

of generics, templates, and other rruse
mechanisims. Oftn,. a sxytem's snitlysis Thee factors can be identified concurrently with the I
products are in a functional decomposition commonality identification,

I.

noTh techniques in representing adaptation can take against an operational scenario. Verification can be

manyforta. Thegeneralization-specialization feature accomplished in the following ways:
of OOA provides for rubclauaIs where different
coofiguratlons can be further represented. The object I. lIupection - A team of domain experts
specifications have adaptation sections in the clus/ examines the model to verify
object, attribute, and operation sections. State completeness and correctness.
transition and/or structured logic representations can Preferably, at least some of the domain
also identify tailorable needs by modified notation, experts will not have taken part in the

information gathering, therefore.
Often, another perspective on commonality may be providing an Independent review.
realized in this step, causing a refinement to a class Operational scenarios can be used at
content or hierarchy. this step to assure the correctness of the

model.
I1 In some cases, certain capabilities may be mutually

exclusive and cannot exist together in the same 2. Prototyping- A small set of capabilities

system. This cardinality can be represented by an can be implemented using a prototyping
instance connection that denotes a zero-to-zero tool/language. The prototype would
relationship between objects/classes, then be executed.

3. Simulation - A simulation model can be
Example: constructed to determine (to a factor of

confidence) the viability of the
The external interfaces to the supply domain are allocation of performance requirements.
generalized, as shown in Figure 4.

The supply domain has several common 2.4 De1lgn Dgmain
characteristics in the form of attributes (data) and
operations (functions). Each system in the PEO- The goal of domain design is to produce a Domain
STAMIS domain (or nearly all) possessed all of the Specific Software Architecture (DSSA) with reuse
capabilities listed in Table I. guidelines and classification. A DSSA is "based onI the concept of an accept- 4 generic architecture for the
Next, patterns of variations of those capabilities were target domain. As defined by DSSA, a software
sought to identify adaptation requirements. Some of architecture describes the topology of software
the differences were attributed to the unique components, specifies the component interfaces, and
requirements in the handling of different supply identifies computational models associated with those
classes (bullets versus bread, for example). Others components.''s Quanrud has stated, "A generic
were identified by organizational needs (in this case, architecture provides a high level design for a family
Army echelons). For example, commanders at the of related applications and a set of reusable
theater level need visibility and modifiability of the components that are specifically intended for use in
distribution of stock to the fielded divisions, whereas those applications. The reusable components are
unit commanders only need information concerning designed to work together and should provide most of
their own company inventory, the code that would be included in a typical

application. Actual applications are developed by
These groupings led to the formation of subclasses adding application specific components and adapting
representing the variations in system responsibilities the reusable components to meet the requirements of
(see Figure 5). the application. Adaptation of a reusable component

may take the form of modification, extension, use-as-
is, or replacement." prescribe a specific completion

2-2- DgMjn&MQddLYrflhQfl. The point for the DSSA, but provides for the tailoring of
domain model must be verified in order to establish the level 12.
a reliable beseline. The business process and data
models. if available, should be used as the "doctrine" The level of detail in a DSSA, at the time of this

I
I

CAATUS

Figure 4. Supply System External Interfaces

Table I. Common Supply Operations and Attributes (Example)

AT"IBUTZ8

Transactions
Stock Quantities
Catalog

OPERATIONS

Accept Incoming Request (for Stock)
Request Transaction Receipt/Status
Provide Transaction Receipt/Status

'Cancel/Modify Incoming Request
Issue Stock
Receive Stock
Perform Inventory
Maintain Stockage Levels
Receive/Update CatalogDisseminate Catalog

lmm•

P"Wo mowZ1Iii

I
Figure 5. Variations Depicted as Subclasses

writing, hai been nominally equivalent to a hi,'h-level environment, some aspects of reusability and
design. Ihis DISA/CIM Domain Ana' ' and tailorability may have to take secondary consideration
Design Process does notof detail by prc.ý ,or a to efficiency in order to meet performance
completion criteria control to be determii,.-d by requirements". Other domains, especially
management. Management Information Systems (MIS), can realize

the cost-saving benefits of more thorough abstraction,
The purpose of the DSSA is to provide a framework encapsulation, and parameterization due to less
illustrating the major components and their interfaces stringent timing and sizing constraints.
that satisfy the requirements of the domain model,
from commonality to adaptation. ThWs includes reuse The domain design process is outlined in the
guidelines, rationale, and discarded alternatives, in following major steps:
order to give the software designer an understanding
of the avenues already explored. The reuse 1. Identify Domain Constraints,
guidelines help the system designer understane' the
assembly and tailoring of an application from a 2. Collect and Organize Design Information.
DSSA.

3. Identify Potential Design Components,
As in standard software design, the qualities of
reusability, adaptability, and efficiency must be 4. Develop Architecture, and
balanced to meet the demands of the domain under
development. For example, in a "hard" real-time 5. Validate Architecture.

I
I

The domain design process can be top-down only, docume nts, while other projects choose not to
bottom-up only, or a combination of the two. The maintain or keep their documents. A potential source
third alternative will be presented herein, although of design information can be acquired by reverse-
optional processes can be deleted to enable top-down engineering code, though the algorithmic information
only. is usually difficult to obtain. Other sources include

repositories, trade journals and publications, text
2.4.1 Identify Domain Constraints. The books, and academic publications.

goal of this process is to identify all established and
potential constraints affecting the design process. A
number of factors, such as imposed standards, 2.4.3 IdentlU Potential Deslign
Commercial-Off-The-Shelf Software (COTS). olmIponenh . This crucial step enables
Government-Off-The-Shelf Software (GOTS), and construction of an architecture, which is the next step,
hardware, can limit the choices a domain designer by identifying existing quality design components.
can make. A successful domain design mcets as This takes place before the actual start of architectural
many constraints as is practicable. thereby enabling construction so that available components are used as
reuse. the basis for the design. In the past, designers would

often develop a design, then look, often
The domain designer identifies constraining standards, unsuccessfully, for components that fit the design.
policies. directives, guidelines, and any other NOTE: This step is optional if the domain
documents that impose design guidance on the engineering effort is top-down only.
domain design. These include decisions as to
environments. COTS/GOTS assets, data Domain designers and implementors identify
standardization, and other aspects. components meeting, at least partially, the

requirements of the domain model. This provides for
The domain designer researches preplanned hardware reusability of existing components by using them to
constraints to determine if the design: define the design. Ideally, the components have been

developed using similar domain analysis method
1. Must be tailored to meet specific goals paradigms to enable an uncomplicated comparison

dictated by timing, sizing requirements, task. For example, if the components were developed
or using object-oriented design and the domain analysis

method is object-oriented, *then the information
2. Will be released from previously restructuring effort will be minimal. If the domain

established constraints, analysis method is functional in nature, considerable
effort will be required to convert one information set

The domain d&signer identifies the domain system into the representation of the other.
boundaries as directed by management, that is, the
interfaces to other layers/compon'nts in the system. The engineers assess the reusability by applying
For example, management guidance might dictate that established reusability criteria. This helps to filter out
a communications domain be implemented without components that will have little or no value in this
regard to any particular mission-specific domain, effort, and to focus on the most promising ones. A

number of metrics are captured and the amount of re-
engineering is estimated. Based on these results and

2,42_..X&.c.e and Qr oanize Design their comparison to the reuse criteria, a determination
Inlnnan . The domain designer creates a is made to either accept the component as a potential I
catalogue of existing design solutions, domain candidate, to reject the component, or to decompose
constraints, and lessons learned. The catalog is the component to allow a more complete assessment.
needed to provide an index for efficiently accessing
pertinent design information without requiring sifting _

through stacks of documents or hundreds of files. 2.4.4 Develon Architecture This
process utilizes components identified in the previous

Existing design information takes many forms. Some activity to construct the DSSA. Often. several I
projects have complete and up-to-date design alternatives can be derived from existing systems that

I

?I

I

I satisfy the requirements and constraints. If learned and reuse guidance are captured
appropriate, one DSSA should be selected that iin this phase.
provides the best solution. In very large domains,
one overall DSSA may not provide enough
commonality to be of substantial use. If for some Example
reason, existing architectures are not used/available,
then the standard software design principles are used This example demonstrates the construction of a
to create the DSSA from the domain model, within mission-specific (supply) DSSA. The data and
the identified domain constraints. Care must be taken operations listed in Table I were grouped together
to adhere strongly to the software engineering rule of into distinct objects by a closer examination of their
abstracting detail to the lowest level and isolating content and purpose. In order to manage complexity.
implementation dependencies. the construction of the DSSA proceeded by:

IThis process produces a design specification 1. Object identification,
providing enough information to advance to the next
level of design. Criteria established at the beginning 2. Object interaction, and
of the effort determines the level of detail to be
achieved. Until the required detail is reached, the 3. Object structure identification.
design is continually decomposed and refined.

The first two steps are illustrated by an abstract
As in the domain model, reuse guidance is provided structure chart (see Figure 5). The third step is
to help the system developer tailor the design to the illustrated with a concrete structure chart (see Figure
specific needs of the system under development. The 6).
domain designer creates a set of guidelines for using
the DSSA in a full scale software development
activity. These include a discussion of the rational Object Identification - The first data item
for the selection of a particular alternative, when to (TRANSACTION) and the first four operations center
use particular components, how/where these around the management of transacition information (a
components have been used previously, and any REQUEST is one form of a transaction). This
lessons learned. suggests an elaboration of an abstract object

"TRANSACTION" as shown in Figure 5. The next
data item and the next four operations focus on

2.4.5 Validate Architecture. To ensure management of the 'iventory, and can establish an
the DSSA created meets the domain model abstract object "L- VENTORY". Finally, the
requirements, domain constraints, and provides a remaining data item and operations manipulate the
workable solution, the domain designers and catalog information used to order stock from the
implementors must validate the DSSA. To do this, supplier. These are grouped to form the abstract
alternative approaches exist: object "CATALOG "

1. Inspection - Domain technical experts Object Interaction - The establishment of the
review the architecture and provide interfaces with the external entities (the customer and
input regarding the correctness, from the supplier) reveal that the only two "visible" objects

their perspective. are "TRANSACTION" and "CATALOG". The
"INVENTORY" object receives commands only after

2. Simulation - The software characteristics the initial transactions are validated, and generates an
are used to produce a simulation model event to create a transaction if stock levels drop
focusing on measurable performance. below a preset point. This interface organization

allows for an orderly control of the inventory and
3. Prototype - A small demonstration separates the processing of two types of data

program is assembled to ensure that the (inventory and transaction). The CATALOG object
design can be successfully instantiated does not need to interface to the other objects as it is
by an application. Further lessons only accessed to update the catalog and to order

A
I 11th Annual National Conference on Ada Technology 1993 6t

I __ --

shipments of stock, operation is a concurrent process' (in this instance an
Ada task) that compares the present stock inventory
with minimum sustainment levels and calls

Object Structure Identification - At this stage, TRANSACTION to reorder if the minimum is not
the details of the objects, are identified to provide a met. The Stock Quantities data is now decomposed
complete design description. The operations and data into the three data objects (Stock On-Hand. Stock
that where grouped before to identify objects are now Due-in, and Stock Due-Out) that are created by
represented along with any structural decomposition.. instantiating an object constructor (in this instance an
For example, Figure 6 shows the structure of the Ada type).
three objects that include the operations and data
from the domain model. The INVENTORY object Figure 6 shows the calling connections for a scenario
not only has the Issue Stock, Receive Stock, and where a customer submits a request, the stock is
Perform Inventory operations. but also a Check available and is issued, and the action causes a stock
Stock Quantities operation needed by item to fall below a minimum lcvcl, prompting a
TRANSACTIONS to verify stock-on-hand before reorder.
filling a request. The Maintain Stockage Levels

1111116 -- -

F D

Figure 6. Supply Object Decomposition

67 11th Annual National Conference on Ada Technology 1993

I

3.0 SYSTEM INSTANTIATION In order. to realize the savings required to meet
budgetary cutbacks, a systematic way of identifying

In order to implement a system with domain analysis large-scale software reuse is necessary. Developing
and design products as inputs, the spe,:ific and using generic requirements and des:ns will make
characteristics of a system are "overlaid" or the difference in moving a system out of the initial
instantiated (informally) to the generic tenlates. For planning stages into development and fielding.
generic requirements, system-specifics are gathered
from business process improvement products (IDEFO
and IX models), interviews with functional AUTHORS
proponents, and user/site input. The systemI instantiation takes the form of William (Will) Stewart is a member of the Reuse
insertions/modifications of system-specific Engineering technical staff at SofTech. He has 10
information into the requirements template. For the years experience in software engineering, including
generic architectures, any system-specific design work on Space Station Freedom and the Army
features are added to (or updated to) the generic WWMCCS Information System (AWIS). He has
design to satisfy implementation constraints and received degrees in both Computer Science and
system-specific requirements. The domain model and Engineering from Old Dominion University. His
generic architecture products will contain information interests include methods to support domain
about reuse guidance, rationale, alternatives engineering, knowledge engineering, and robotics.
considered and discarded, and lessons learned from Internet: wstewart@softech.com
the systems' development and domain analysis efforts. Williamn (Bill) Vitaletti is a member of the Reuse

Engineering technical staff at SofTech. He holds a
4.0 CONCLUSION MS. in Computer Science and a B.S. in Business

Economics from the State University of New York at
Domain analysis and design allow identification of Binghamton. His current interests focus on domain
software components early in the development life- analysis modelling and automated tools development
cycle, including the planning stages. Orientation to a for use in the domain analysis arena. Internet:
design and to the common requirements of a domain wvitaletti@softech.com
allows the components to be larger, more complex,
and more highly integrated than traditional reusable US. Mail:
components. These features can result in higher levels
of software reuse in the applications within the SofTech, Inc.
domain of the architecture. These same features may 1600 North Beauregard St.
make a generic model and architecture less usable Alexandria, VA 22311
outside of the application domain for which th.

* were created.

i REFERENCES

Vitaletti, William G., and Chhut, Ravinn, Domai Analysis Guidelines (Draft), for the DoD Software Reuse
Program (DISA/CIM), pp 1-1, 2-1, SofTech, Inc. 8 May 1992.

2 Chubin, Sheirie, DISA/CIM/XRE, Domain Analys s Workshop Proceeding, for the DoD Software Reuse
j i 1Initiative, pp WG1-4, 21-22 September 1992.

3 Tracz, Will, IBM Federal Sector Division, "Domai Analysis Working Group Report - First International
Workshop on Software Reusability", for ACM SI SOFT, Software Engineering Notes, vol 17, no3, pp27-33.
July 1993.

A
I 11lth Annual National Conference on Ada Technology 1993 68

rI

4 Vitaletti, Wifliam G., and Guerrieri, Ernesto, Soffech, Inc., "Domain Analysis within the ISEC RAPID Center",
Eighth National Conference on Ada Technology, pp 1-5, Atlanta, GA, 5-8 March 90.

5 "The Army Strategic Software Reuse Plan", office of the Director of Information Systems for Command,
Control, Communications and Computers (ODISC4), 31 August 1992.

6 Bailin, S., "An Object-Oriented Requirements Specification Method". Communications of the ACM, pp. 608-
623, May 1989. 1

7 Braun, C., "Domain Specific Software Architectures - Command and Control", Proceedings of the WISR '91 4th
Annual Workshop on Software Reuse, 1991. 1

8 Buhr, R., Practical Visual Techniques in System Design with Applications to Ada, Prentice Hall, 1990.

9 Coad, P., Yourdon, E., Object Oriented Analysis, Yourdon Press, 1991.

10 Kati,, K, Cohen, S., Hess, J., Novak, W., and Peterson, A., Feature-Oriented Domain Analysis (FODA)
Feasibility Study, Technical Report CMU/SEI-90-TR-21, ESD-90-TR-222. Software Engineering Institute, I
Carnegie Mellon University, November 1990.

11 Prieto-Diaz, R., "Domain Analysis for Reusability", Proceedings of the Eleventh Annual International Computer I
Software and Applications Conference (COMPSAC 87), pp. 23-29, Tokyo, Japan, October 7-9, 1987.

12 Quamud, R., Generic Architecture Study, Technical Report 3451-4-14/2, prepared for US. Army CECOM,
Sofrech, Inc., January 1988.

13 McDonnell Douglas Missle Systems, Developing and using Ada Parts in Real-Time Embedded Applications,
CAMP-3, prepared for USAF Armament Laboratory, April 1990. I

14 Gilroy, K., Comer, E., Grau, J., Merlet, P., Impact of Domain Analysis on Reuse Methods, prepared for US. 1
Army CECOM, Software Productivity Solutions, Inc., November 1989.

15 Bailin, S., "Towards a Case-Based Software Engineering Environment", Proceedings of the WISR V2 5th Annual
Workshop on Software Reuse, Palo Alto, California, October 26-29, 1992. I

16 PEO-STAMIS Domain Definition Report, prepared for the Army Reuse Center, Document No. 1213-65-210/3,
Sofrech, Inc., September 1992. 1

17 DISA CIM Technical Reference Model, Draft, 1992.

18 Vitaletti, William G., Stewart, William R., and Chhut, Ravinn, Domain Analysis Guidelines (Version 1), for
DoD S&.tware Reuse Program (DISAICIM), SofTech, Inc., December 1992.

19 Design/Coding Guidelines for Reusable Ada Software, prepared for DISA/CIM, Document No. 1222-01-210/9, I
Sofrech, Inc., November 1991.

20 ISEC Portability Guidelines, prepared for the U.S. Army Information Systems Engineering Command, SofTech,
Inc, December 1985. 1

I
S69 11th Annual National Conference on Ada Technology 1993I

' I . , -... .

Il

I

A PRACTICAL GUIDE FOR ADA REUSE

Robert Haddon Terry
Margareftha W. Price

MountainNet, Inc.
Morgantown, West Virginia

Summary cycle phases. For instance, during the design and testing
phases, due to the artistic nature of the activities involved,

Although reuse is accepted as a means of improving it is difficult to calculate time spent or saved.I software quality and productivity, only a limited number of
organizations are taking its acceptance seriously. Our paper Be-fore we outline our recommended approaches, let us
discusces the processes involved in reuse implementation. It first report on our investigtion of the current issues, expe-
relies upon the recorded achievements and lessons learned riences encountered, and lessons learned by other reuse
from previous and current projects as the basis for its efforts.
recommendations. This practical guide includes a discuts-
Sion ofreuse issues, actionsand benefits. Withourproposed Investigation ResultsE approach, an organization can gain confidence through a
low-cost, modest reuse program, while developing valuable Ovestions Encountered
reuse expertise. Findings are presented in terms ofproducts,
which include information for initiating and managing a Selecting a practical, achievable reuse approach isI reuse effort. facilitated by a clear understanding of the issues relevant to

adoption and implementation. These issues and questions
Reuse in the Life Cycle include:

Several experts recommend the implementation of re- - Development Methodology - During which life cycle
use throughout all phases of the software development life phase, e.g., coding, design, testing, and/or documenta-
cycle. Dr. Kyo C. Kang of the Software Engineering tion, should reuse approaches be applied to achievc maxi-
Institute proposes refiring the life cycle model to include mum efficiency?
reuse activities at each phase.' Dr. CharlesMcKay, aNASA - Analysis Techniques - Which of the analysis techniques

* scientist, emphasizes the importance of developing, import- produce intuitively clear and achievable paradigms of a
* ing classirfyingandlevemging reusablecomponentsthrough, practical reuse approach?

out the Space Station Program life cycle.2 - Assessment Approaches - Which assessment approaches
- best identy those reusable artifwcts most relevant to a

Even though it may be apparent that reuse activities given developer's needs?
should be included in all phases of the development life - Multiple Instances - How shoult multiple instances of
cycle, economic constraints and managerial attitudes have reusable artifacts be constructed?

I limited its implementation. We have, therefore, elected to - Integration - How best are the af-wrementioned activities
limit our scope of concentration to the code development integrated into the other life cycle phases?
phase. - Presentation - Which presentation methodologies, e.g.,

modeling and diagramming techniques, best suit a given
In the coding phase, visible benefits are more readily developer's needs?

Identified. Reuse at this phase can easily be defried by the - Testing - Which testing methods most adequately ensureI ratio between DLOC (Developed Lines of Code) &nd RLOC the integrity and viability of the approach selected?
(Reused Lines of Code). The benefits of reuse are not so -Management -How arepolicies regarding research, quality
immediately evident or measurable during the other life control, and information dissemination dfined and imple-

mented?

1
I 11lth Annual National Conference on Ada Technology 1993 70

• \/ /

./ -o

II

Practical Approaches _ormaton Gthcrin

Certain basic steps and practices have been effective in We began by performing a thorough investigation of
S. addressing and overcoming reuse implementation chai- possible candidates. Quality controls included verification

lenges. The following briefly describes proven, fundamen- and validation ofsulficient source documentation. We then
tal measures which support sound approaches. attempted to identify and locate supporting material for the

list of chosen possibilities. The resulting materials were
- Investigate the systematic and limited use ofexisting reuse analyzed and initial candidates identified using the defined i

successes. In particular, apply theories, which arejust sets quality measures.
of axioms, to activities, thereby utilizing the most current
actual advances. We then created and issued an informal survey. The

-Setacleardistinctionbetween small-, medium-, andlarge- survey included questions regarding the current level of
scale reuse opportunities. reuse, the number and position of persons involved, and the

- Provide the reuse effort with a comprehensive variety of nature and instances ofreliance upon repositories versus the
,software development information, availability of COTS (Commercial-off-the-Shell) compo-

- Effectively and definitively rely upon reuse successes to nents.
maximize the reuse effort. W

"- Provide support for different development methodologies We originally intended to target ite survey .o six or
at different stages within each model, more high-level managers or, at the very least, those

individuals most likely responsible for a reuse endeavor.
Recommendation: Reuse Expert (RE) After a series of frustrating contacts with voice mail systems,

answering machines, secretaries, andbeleaguered colleagues,
/The above suggestions are certainly warranted and we concluded that access to this target audience was not only

needed, although they lack a means for implementation. exhausting but difficult to obtain. However, those surveys
7 One solution is to createanew position called aReuseExpert which were completed and returned were scrutinized to be

(RE). sure the answers provided could be verified. We then
analyzed the responses and selected three Ada software

Suggested qualifications and responsibilities which the development projects which not only represented the variety
RE should attain over time: of available development approaches but also displayed r

penchant P-r reuse. Again, quality guidelines were estab-
-Bea full-time memberofthedevelopment team, whose sole lished and included such issues as size, direct contact with

responsibility is to the reuse effo' .itself. members integral to the effort, and the receptiveness ofthese
-Be a senior staff member who is held in high regai d by the individuals to incendiar' r,estions and comments.

development team and displays a positive attitude towards
reuse. Data Presentation and Analysis

-Participate in the analysis, design, and coding phases of the
development process. In order to preserve andir bjectivity, we elected to

- Attend all team reviews and walk-through demonstrations present the information anonym .wly. Although we have i
to facilitate constructive corununication and to avoid been granted permission v r "4e full disclosure of our
duplication of effort. findings, particularly since most are currently and readily

- Research, analyze, and repon on reuse-rmlated resources. available, we feel it serves no purpose to a,.tach our sugges-
- Obtain trairing in areas relevant to his experiences. tions to any particular endeavor. "Ie are attempting to offer
- Maintain the common sad shared in-house software re- %olutions which could be used by any effort. Indeed, it is our

positorics, monitoring access and growth. hope that these scenarios result in a better understanding of
-Avail himselfofandexploit all opportunities in trainingthe reuse, its properties, and its acceptance. I

development staff in relevant reuse materials.
- Communicate reuse development needs to management Priect A

and gain expertise great en. gh to warrant shifts in the I
development paradigm. General profile: A multiuser information system

-Expose hisfindings tothe reuse community bypublishing, encompassing an inventory control system with command
demonstrating, or attending curn_.. forums. decision modules.

S~I

71 l1th Annuil National Conference on Ada Technology 1993

L.... ... /

r•mographic data: The system consists of 300,000 Recommendations:
LOC (Lines of Code) ana took approximately two years to
develop. Testing was slated for 'anuaxy 1992. A total of 25 - The project should have retained one RE.

* assigned software developers have been involved on a full - The RE should have seen to the organization and produc-
time basis. There were also more than five support personnel tivity of the program reviews.
and some outside contracting. The developers had different - The RE should have coordinated and managed reuse
roles including three system administrators, four communi- component acquisition and purchase.
cation specialis, two database administrators, oneconfigu- - The RE should have constructed an in-house repository
ration manager, and more than five teams of 2 to 3 applica- beyond the initial and immediate needs of the current
tion developers, development project.

The RE should have been responsible for repository
Reuse achievements: searches and retrievals as encountered.

-New development efforts have adopted their methodology, Project B
standards and software architectures.

- A scarcity of off-the-shelf software required the develop- General profile: A financial system which is an
mrent of an Ada configuration management system which application redesign that services an accounting and finance
will also be exported to other systems, center.

- The methodology has been documented in a much needed
"Developer's Guide". The guide shows potential as an Demographic data: The system consists of 2.75 mil-
organizational standard. lion LOC with a total development time of 4.5 years. Of this

- Approximately 6,000 lines oflocally written, reusable code total, approximately two years were spent coding. The
(12% of the total lines) equals 30% of the system based on system was delivered to the customer after development and
the number of times they have been reused. qualification testing was completed. A total of 90 people,

- A page formatting component was reused from the ASR including 52 coders, were directly involved at the peak
(Ada Software Repository). period. Responsibilities were divided among management,

- GRACE Components were purchased and used, albeit not database, senior analyst, system support, advanced technol-
I extensively. ogy, application, design, and application generatcr teams.

- Preliminary discussions have begun about their own in-
house repository. Reuse acbievements:

I Reuse lessons learned: - Portions of the design were isolated into packages. This
permitted a physical decomposition of code rather than

, - Lack of tools. Very few commercially available tools had decomposition along functional lines.
been developed which appropriately fit their needs. - Timing issues were encapsulated in a single mainline

- Unanticipated tasks. Searches for reusable artifacts had to generic package for reasons of consistency. Over time,
be conducted, prices negotiated, and testing of the pro- advantages were found by having several mainline ge-
cured products had to be accomplished. nericr :p•es. A benefit of this approach was thatevery

- Lack of resource knowledge. Greater emphasis sboldd finmc, .. ! ,:.!bsystem had the same "look and feel".
have been placed upon searching Ada repositories for - A follre -. inventory project, about one-third the size, -

* specific software requirements and developing packages. used th,; tools created and reduced its cost by one-half.
- Lack of component support. A support group for the - Each of the more than 2,500 data items was defined in a

purchased reused components was created and later dis- database. Centralized management of data item typing
banded. The product was never made fully available. enforced an uncommon level of consistency throughout

-Program reviews were attempted to increase the amount of the code.
information sharing, but they were discontinued because - AD interactive programs bad, by definition, exactly on,:
of time and coordination constraints, screen. A screen painting tool was used to generate the

- Unanticipated ramifications. By judicious integration of code necessary for the screen and its system mapping
the database, control files, and reusable packages, varying support.
field requirements and development modifications were - Specifications were used as input into a generator which
affected by minor system tuning. generated bodies. A full 76% of the 2.4 million lines of

code were generated,

A
I 11th Annual National Conference on Ada Technology 1993 72

'1 -. ." "-,- " •

• 2q• '. ,- :. . .

(OdR Sharing waxi W~Tr)Ped tv' vreainit. dva~tiihting. and Itrimps, *hu h. ar cf, tpri" (it of v 0~t4 lArge, d~idtilst~f-d

urting comirIKmI so, 1tutr libtialles Walk ibith.Roh prW. netW

vided tviMAUnituulw tf% 'XhAtr the kvwled1gf of litranexaa'1~'fnlpuditl vo~a

contents wppkdt:1Wins folul*1 "itrA

- (inmiun Codte (e x . a own p*ukagr) andt Aharrd (-Me eiimastrd2 'tniON~tin AuLit I X, pl't to~n)\M Cn

(e gdate oltetators) weret 'tintAirv- and rti^ýUR susdý AwtaWhr vi'ts' inwue-it(ih 0t11% ihe #iVmvn ioi
umreii- SN' dimr+11"Wcnt AMd hatV a *p'-ý tfwr; liff'

Reuse humAS haesrued: re~te th~an W yearit, Ttur'r aft' iN-'" Ilfbrit tur i ,m
inultipt# coimpa nie w'rlitri ton the psoy'uA 11w wieueov

.Lckhomtniaton(ommunwt(Aicnhretwf'rn liblAx' cownipotrvs irvi',eofw~ lnx lowl"'ti " A0 t-"~'Jb Vh. No in t

tians was difricult to maIntain and Nf1AulIint It wriqt aprtimfmlOvhl 05 glt-ApV OWu 0f w tbI2 4ý fft:s %j-n

p&¶a~l~ *lriat'd ~ a aptnalo trderwlasund rJ*1p(p'W(,l that h*% I,) fl-noW om! l' prtir lifit0w "

tni'toring v*1nubibltit pnt

ASR was minimal aimv the &eveltpers feared their intro- vD&WW aebievnmems
ductimi would result in (xinrlipralion manage"ent PrWf
lema * An adn hiu wonrlitig grioup vtr* op "ip as 0 Iridi iroe "0'

- Laiko(cciirdination The poiwerilil senior dexigii t'ani did inf'-rWvitd unfleert, tn dr.4rt1,;rvt Owe pW"Wi tV414414

noi commimnsucv the p"Joeriw* W refi~v effet-tvrlv iiali advantage ox trute tqhu tino'up

* 1nanticipateitC IsirfliAlirns. LAter in the deim-eltopirit, -It* woitiog vgiop rv14isf41 1%1(1 an of(ti, oaf porgniftatiov

projec riruse Mfoil* were covitittently impe"d~ by dais. *hicti pro~ides a Projkftt wi$k 1 tr.tuolf the Fruvi

baoe difficatifik effort?
-LAAbOfitevgratin Walk -throogths btsvme infernal teamn Thie RW(, t&efuid a Frusti pfl. 0-4 sod ~ritabtii"w qstift

llntielting while informtation ishAring was bivoltdto *r-gre, sibililii~ for est h (if itt 1treo"a * ti, tf are &0 svv-Wtkolu

gated grotips There wax ver- little retiae between 11tvuAq ill the P101fJils di tluurtcn~WII VVIAO
at the appli(Atiort level IV TheRV dctfrwid ro4es awl tr; ipmvtiu¶t fior utinttr

I-eMk of in -house repositoiry The effort lac-ked an in hoise authNits, reuseri on ruse apo x '~h manti N i.lari

repoitory', t%i~h b v'"ld have Saln serid as4 a storApt linit whik h axisure Ow 4qualiti of Owtoriws priýtia-tt. Prix ptir

For the apecif(ationit ustd i'ih the generator Moununeru, and po-Ipte
* hifg a lilefirVri wnani let NhmvjW On OW i11 Nlktcv vornM

Rec..meudatloaa' ne~~ntri the PWk(; prifot'rod s atSrcusr I liiA
ala huItialty, 101 differ -tit tamr,, wirir ktIormifud that

* Theprolc should have retained two RU's mield he piott'ottattv (tfi'A tnte IA', ("i to vi am'O"tty

IVTh RIs should hawe madre inimtran 4 Cm c1nWmmtinktn a roup.s within the ptojetI

priorit* and shmild hove beeno present at toaI walk. lb W.u eieeeoiurtorsw-a~a~
thrmug reutable erposo)ntAIt ib i btkirrsed the tlwli'oivwl't

7 Th PFI shmild have taken ful waobatag of the retse anod their "tvww' ok lhsdlcs

opporru ittes provided bry Ithe Mxoch components OWd the * ?A~h veTequV Ot groupr It "Mir, hAf X-S ifA* reuse Vf

ASR taking ouit the "ws of the Ncuse (;rixtp (tur t* it of she

* Thie IlFs hould Wave maintaned, moiatorileid, and dissemi.delo et rusbgt ti hp h W ldak

%Maed womirw, and shared lWary cwrintenta avantage o(what they are par !ng (ot

-Th IV l Pa 6 sM have been in. luded in ithe derisroti maiking The Sharing a(1kftwaM(re o to `1tiow's an MWe CAW) fimrd

astskan Id byf the senior design watea sharing of intocaummato Nt%*vim iia tfirrent de~velopme

. Wh rs' mWd have planned (ot later mstns ofivris by gratpo.whith in.,asretttht unotsltianosgO~t 11WpfNd em

&atomatin data -dianges with toos that mould hanidle domain and rajord eat h paniut.aplsar levels ti rspartrtsw

iWueamed xalon -The RWO Wmanhe W urtoua f(Wilna "n rsposatWWs (C g.
iwlhosior rpooutorvs. AdaNYI, ('OWMl(, (RAQ, &Wd
STARtS)

-The RWG rowtnienwrded rewad%^ and Obher trkarotlii

Gmewrol pro~.ET ka attvavrd autiomated systm for fbe ptulkspatn in compconent mte~u

avialiiift The "yem 1.4 pfstntly brokien into 16 logical

I7

I 1~ ~t(;~w~Icr ~ ~~~t p~'i kt rle afthe v%iwd atan lninduxi 1~~tnrt infl 11wf-1~~

* lt ~ t: ~ ~ ow lw -~ ~sluat Psp;-' st ie 11W .lisgrnilw of P41 A rV a!vi jF*('% Irs
rf;.Itr (efilef, thel *isi pivq-S4, alld 4Iirr ptli qIaiveýt' 1rvfW~nW loi p p'ijk gfolilh arid RWtfi~tI's ln, ftU~ W f Vv A

"rnt" uxici% P torci aw tjll timp , commitd elfpre itisfi a i f-ti , t 1.;
((fmalitt'iriift nnict be MAI~. 5Souir the frqvritivkilt in3 Rs~kau~~aIard~~.~p~tin nii Aiekrtatul tor-ttnt e~xahior~n, inicri,(i in,

snd control FAuvth~r q11'r~k~i0W u At rC a kre igtmd in flmn

fOSAI ii s' OW tio ekflIhwo.riIl m~tti ~
Ifi 1h,1 rpmiit.11 rni~. tj% ini, 4A RO wta intrA, the rroiw c~ ~r %ill Olwn tt e p e

MwirJN1 1t1iViluAtt4. tllp'i tl1?v (*~t k~'ti5 w atv 141 tse i to etaiutei~~ in lOmtqe liivkag%1 And1 comptmontit Nk l,)

*1 1~b loiil" ~$~lei-Ih afo~tIos(i t~tetri ti Itjtiple the Orrin 'oi((tltwo rsi'praewnt pak~var, *wty

*I bire v.wed4 Il Ir more Aiitoiiiion of 11W piloce4% the Owl; o~Ia ~l akind m#iiisi Sotaltcr firms *IV ho*% Ovit n
Pt 11 movitx bco-ri~iig. t'it eaffi, in fttw lifte (ý lt, at the puW1 wli 1 %d iAq aamlntit Aia f (Axle kian (NWW to rt~j1ii~tC nt

41V4 tr i'et114, of r e'n Ithe proi1wis'4l tiky,' with all O1w ojc. ol
*AremR %iherk pi~rnfial if vqA,1v iiiinit ateidr ntied

*ý.'it% f"40 exira ttinding to1 dw-'ltp, the ('1i~vvp nwnt idtly a COmjefhen'ive &Pk*in trIA11,111 wo(Mli tW
Ir'ifor.wAc atl thk lpoint Chitr epricrwt indos-ilct tha~t An

rvuuie ~ ~ ~ ~ ~ ~ w practical and fl4besi ae wt~ bfea

Pfuiti" filarol~' within en~iuf ofin att' formp dw~ the heta vkdtivifl
nII tfWiP %k6i,411 %te li 14 111r Ieofyl1%ill AnM~aa t~om aine lirni XVo byath Foloibrr ing i In lisctirta3 . I r (porsif 1 wi th fieplI*~.fcin -eon rl ext i mgoi itae grtpditorigOk ~i k m iinii
andt #v4;ur nutuin4 o bthe (iauiitw tiesatlaitotPa etiate

re'tiq*1~~~ ~ ~ ~ ~ ~ arrayl manMipulationNJwth41y st,1411a

3iii tolt r 1 * twi malhnca Is mbpe adlroiptwitiemth tic Winffi

sftenifft am11h1J tinua weithRE Poisi defntd goal a ondnfae crain~ u4l limtled folltowi uowng WAen (OIýpIOJ

nhusion th c~eillioqa wti h neligble11nlrtc~ tosesimple editor
I hfelr agains Ink pflisilf n w %rapertei At leaftrned, andthe text forrmtter pa-kage

ag~~~~t~~~ra(frn reuw* Arert rrotormptin pelchx

povathis evm~ is ki~n~ted 1w RU emovig th Nttric fluiutonq

Ptoros air citon, Pefrmn An~tn tew-Oifte anaysi Posrmonin hauul in NhOIfe vit ivt"ii ihil(ie titadin # scfranynflmtdttefil n fipn
-3vstsi lwvti h foti utf-tvudrair

rcdulshifts in the organizalicn's developmental pars-
Qnruv Abelra' Dwt r~ms digm, Pina'N. they must be prr~iord to muWg and enlarge
Array mAntj~iv~tfct upon the reuse eJror
Binay tree ftiwiions

C*wlomsfr thwr are anuty moihods of "ayring and
dassaifyig otjet1s using'I va~rirs of nwmenctaturva. 1140"te

CAlmsate Science Coqroeaton's Reuse Working Porwe Research anid anayze what has been done, fmius
Growp. fm example, did somethilks they cated! A "Wmnl attention towards what Is needed Complete the foflow-
domain Aa lysis' whk h was 'rasfulw in Wnifn~ying Iing recommended &Wtivties until saissidld of awxess

comnclassies aWd ta thtstins (IinunicationI'

Wt1h the ewirfiti *X1 o be. gONIPe, the rru~exepert can
then dowa'us their reletvance with drvrthlervs who will be *Gather and maintain Information about the in-house
MO141krRSI to rate the 'r^aasty of mbc 0j*"'1 to their sofware domtain,
curvrAn projrd IDevelnopri will &I*) be as*ed to pirothwe Gather amd Analyze lnfonnnatioe concerning the reuse
* list of ot*~jccs for "!Aile scqoistion or developmen piirsdigm shifts
This r4WVM III Vital fOl bulildinS COnfidenCle in the overall -Contact a&M interact with anytall potential cowionent
ftW efot.surMe for your domain Of intereat (t g, M"woaItore or

commercial components).
Dirveloperit fNdh"c will provide the reue expert - Perform an stireviated domain analysis of inhouse t-

with tMo lhsts of o-)tjvs' bcla'
I ist-house objemis dtemed ne**wsry to the project at hand -Locate and enroll in one or mor reuse woriishops~utoeials
2, *is emnda object which must be locat4 aind re- - Gather and analyznformatl nsmatrelated suject areas

tileved. purchased or develoe (e S. Domain Analysis, Designing lor Rmise. Library
Sciences, ekc) as they are encountered and become ret-

If there wxit in-house object which developers thftin' O'am so Your etymt
they need thy can just make a copy and reuse It. 0ther- . Attend sand participate in any/oll program m*-ews "pig
wis, ther devel44er mees with the RE to decide. whether a reviews. etc.
hem of the okect Is om the "in demand* his a&d whether - Reproduce and d~istribte all relevant products (eg &' cam-
the demand Is great eoomigh to warrant developng It as a log d In-house components, report of externAl oompo-
renasie abjecio at this tite. If it Is approriate to develop Obats, etc)
is am a rieusable ofct, the RP will organize and onordinate
Owe ~ta with the other potential users of the abject, The
coowdinatio would mInt hde kfroti1f'inj the common re Isiftirsa#late
quirements and di. iing ottwhi b developercould hanle
the extra WOrt load Pfors: Continue effo tsoi reamnhing, analyzing

doe entlng. and repo~rting, Begin introdmintr reuse am
Manajeme~nt moeds to encottrage the development of analkt~nutive to development, focus on easily understood

"Neuame ob"et by allotting morne time foir the effort. arid wotlhwhile attempts
Developers need to slire t" responsihility of creating
"reuable objecs. Adt O th~

*Frepar fbr eoshopatttorilas, read relev ant ptiol ical Ions
d~~@ Atiln0the speaerscw the subject Communicate any questions

aOd special Interests with the *peakes (allowing them
time Wo address the qtwestions in the session)

~uitfli~tnes the ~I1~J~.Afttend workshopaltwuortals obain aNd briefly review all

Canodidates misd to be experienced in the 4evetpment th pravudedt material, Ask quest ions as they arise, offer
Pinc.. *daly thssol lob tdnso h esuggesilons when solicited, Review arid prepVarit for each

efiw1 y Wmus poses the abilities to Offcr an riia sessiont (e S, ,during breaks or o .vernight stays),

I
C reate a summary rci.mt of lcsons lcarned from t - Create P reuse working group (pos.ibly from volunteers)

srk~hoptutorials Indudei.ahichmnghtbeample- who have the qualifications needed to improve upon the
mented in mou coimnv reus cfforl,

- Continu attending and pnicipating (moreactivcly) in in- - Pcrfc-m an abbreviated domain analysis of the external

hieqeM~eegramir-%c .k rtkoutand sc oneormot e resorces prnviotsly identified. Prepare a taxonomy (in-
opportunities for riLv• elude price information) and an architecture of the ones

- Keep ac•irste rt-ords on the wlecled rus oppotunities which are part of your in-house domain.
I rak hours, LOC. and other data which can be uwd to - Piopoe and solicit places where reuse is needed from the

esalhate the reue effort. Record all data in a •rt4dFhCet working group members. Prmpxre a report which denmon

package strates the potential value of your sugg.stioris Dcliver the
S -Ptopow the purtha x of com'nvercial components. if their report to those in charge of making such decisions.

contents fulfill)our domain needs Irlmhde the compo- - Attempt to publish your experiences and findings.

nents in the in-houme librar- and distribute information

a0out thCm to potential users
SReiterate the ahbrc'iiatMd domain analvsa, to provide finer r•dwL.

granularity said to identi v oloii om (ion d of&

Create ai nwouse y (listing) rnd an arahtyturc (nodcl) of

t Our paper thus fmr has introductd a basic reu-se program

involving minimal start-up costs This bahsic introdialion

can and should be expanded upon to achieve maximum
I spert benefits, This expansion will be made pomi•itle by an

increause level of expertise and effort maturity. Moving the
Frous (ontonpe with the carr over rctivities of the effort forward is a natural progression forbo4h the 1W awl the

In. leovels Ptopose instans n i shere reutte should ocr.r project itself. Figure I illustrates this point by combining the
Sobtaiet data to st.isto ally deminstrate the value of sstep outlined in the Seclion , "Hlow to Start A Rluse

ithS Ptrogrm", and the foliowing Section which tracks the RV's

expanding level ofexpenise, The figure also provides colt

and time eMinmates for each iteration necssary to ac hicsing

Cor(duf reLse training when appropriate and netdd The the ultimate goal.

traininghuvlid beg borl anmddrrnteod ti•.wwud.the autienu.'s The time comnumed by increased reuse actmitire dc-

abilities penda upon a variety of factors which inmpact projeet dmci-
Provide manajtment with a reuse w.tivity report, lnchld sions Renown reuse and domain experts such as Rubcn

statistics that &monotrate the, vahe of the effort. Include PrieloDiar support the idea of progressive reuo, e g , reuse

paradigm shtfls which would improve the pro•tsI. achieved through a sries of stages based upon underlying

ACfTVITIKS
a

Wi llam I iW

-> &)* V. -

FIG7 UE I ",EUSE PROGPRAM STAGES

I
I t4:•,L • I l-- . .- -t P-- *J* ---. I - - I .. r=]•a•

sucess at each level.* We concur and support this conten- r L

tion graphically in Figure I. Note that allowances are made Available Rgmources
for both progressive and horizontal iterations. Horizontal
iterations are performed when unsatisfactory results occur at The following is a representative sampling of available
any given level, resources. It is meint to serve as good starting point for

beginners and as template for the data structure.
Figure I also shows that cost allowances increase as the

project matures. This is typical of reuse eftorts and, as noted File: Coamerial Components
by Prieto-Diaz, mos projects will experience fluctuating
costs before stabilizing. Figure 2 represents typical cost Record Name: Booch Components

behavior.' Vendor: Rational
2171 South Parfet Court
Lakewood, CO

S*Phone: (303) 986-2405

Contact: Grady Booch
Abstract: Consists of several dozen domain independent

Am • 01 data structures and toolt, each with multiple implementa-
tions so that a client can seect the represcnta.ion that
provides the most uitab!-. time and space characteristics.

M lid Ta -- Although written in Ada, Versions are planned for CO
bwplmeotaUfe *s-,earsm and SmallTalk. Over 300 sites in the US, Europe, and

Mt1UM 2 ,.eCoo BM.t w ?w, a Typ** RIhi, wr" Pacific Rim.
Vendor Profile: Rational is recognized as the world's
leading supplier of Ada products and services. Grady
Booch is Rational's director of object-oriented product

The most important factor influencing the uccess or development as well as the developer of the Booch
failure of a reuse effort is undoubtedly the RE, his commit- Methodology and Booch Components.
ment and expertise. Management must enforce, if neces-
may, the total involvement of the RE in all aspects of the Record Name: The GRACE (Generic Reusable Ada
software development life cycle. The number of REs in- Components for Engineering)
volved in the proje.t depends upon the nature and level ofthe Vendor: EVB Software Englneering. Inc.
project itself. Any reuse effort will be shortchanged if 3303 Spectrum Drive
management underplays the importance of this role. Frederick, MD 21701

Phone: (900)695-1I1B
As reuse is integrated further into the development Fax: (301) 693-7734

process, the number W involvement of REs increase c-. Contact: ennifei Jaynes Lott
cordingly. The RE's role should expand in all other phases Abstract: Consists of 275 distinct components organized
of the software development life cycle. into 23 families of abstractions which total more than

320.000 lines of Ada Code. GRACE components and the
Management should support the reuse effort by reward. 13,000 pages of documentation are provided on magnetic

ing the development team with creative incentives. Devel- rAedia.
open who successfully reuse code or create reusable code Vendor Profile: EVB provides consulting services to
should receive management recognition or tangible m Assist management and technical teams in the absorption
words. Management should make available articles, papers, and utilization of software engineering technology. Also
and any current information on the subjects of reuse, arid provides an extensive Ada Software engineering training
should encourage their utilization. One-hour, weekly status curriculum, products thiat enable and enhance Ada
meetings should be scheduled to facilitate the'information Software development.
sharing on the meus effort and its impacts on current
projects.

\'I

I File: Information Services Telephone: Help Desk (800) 4 ,. CS
Internet: adanet.wvnet.edu.

Record Name: Ada IC (Ada Information Clearinghouse) SprinNet: 304130
i Address: 4600 Forbes Boulevard Abstract: AdaNet repository is a cc oncnt of the

Lanham, MD 20706-4320 Repository Board Software Engince, (UBSE) program.
Phone: (800) AdaIC- II The program provides a possible dornm ,eus library

I Fax: (703)685-7019 with software from the ASR, Jet Propul- rn Lab (NASA/
Contact: Susan Carlsin JPL), DOD/STARS, and Education Institutions.
Internet: xjpo.sei.cmu.edu
Abstract: Sponsored by the Ada Joint Program Office Conchssions
(AJPO), the AdaIC Bulletin Board makes information on
the Ada language available to the public. Samp',e flyer Our study has communicated, managed and qualified
topics include: "Ada Source Code, Reusable Components the reuse effort. In near retrospect, it has succeeded as anH and Software Repositories', "Costing, Sizing and Produc- initial analysis of the reuse domain. We contend that it is
tivity Tools', and *Ada Training Videotapes Available worthwhile reading for individuals, grtups, and organima-
through National Audiovisual Center.' The readme file tions involved in the ,se effort. We are comfortable in the

i provides a complete listing of files available for down- thought, that our products might provide usable information
loading or transferring. in future attempts.

Record Name: archie Acknowledgt nfts
S Internet: quichc.cs.mcgill.ca
Login: archic The assistance of the many contributors to this study
Password: (name needed) is greatly appreciated. The authors wish to thank Linda K.

i Contact: The 'Archie Group' of McGill University Braun, Debra Burns, Jo) ce Coombs, Karen Fleming, Kathy
Bill Heelan (wheelanacs. mcgill.ca) Uphold, LouAnn Welton and DebbieZ Zwe for theirv aluable
Peter Deutsch (peterjcc.tncgill.ca) assistance in collecting data and editing this paper. Wc Jso

I Alan Emtage (bajan(cs.mcgill.ca) want to acknowledge the AdaNETproject and MountainNet
Atstract: archie is an interface for use with anonymous Inc. for their support and encouragement.
FTP resources. It is a system which allows you to rapidly
locate the various public domain programs stored on the Reference/
hundreds of sites across the internet.

File: Repositories 11] Kyo C. Kang. "A Reuse-Based Software Development
Mthodology,' Proceedings of the Workshop on Soft-

Rrcord Name: Army Reuse Center ware Reusability and Maintainability pp.194-196,

Address: Army Reuse Center October 1987.
USAISSDCW, Attention: ASQB-IWS-0 STOP 11-4 121 Charles McKay, 'Final Report on 'A Study to Identify
FoTelephone: Client Services (703) 285-6272 or DSN 356- Tools Needed to Extend the Minimal Toolset of the Ada6272 Programming Support Environment (MAPSE) to Sup-

L d(Newsletter Editor) (703) 285-9071 orDSN356- port the Life Cycle of Large, Complex, Non-Stop.Roy Lloyd Distributed Systems Such As the Space Station Pro-

Abstract: formerly known as RAPID. Contains 1,401 pa'," 1990
Reusable Software Components kR ;Cs) totaling overI 955,000 LOC•. Current populr~tior strategy for FY93- 131 Gregory M. Bowen, 'An Organized, Devoted, Projec-FY95 Ll Currentifiutio, stratior fi. Wide Reuse Effurt,* Ada Letters, pp. 43-52, January/FY5will fbocus on identifluJon, valuation and certifi- Fb~ 92
cation of reusable components. February 1992.

I Record Name: AdaNet (41 Ruben Prieto-Diaz,'Making Soft% ar Reuse Work: An
Address: MountainNet, Inc. Implementation Model,' ACM SIGSOFT Softmare

2705 Cranberr Engineering Notes, Vol. 16 no. 3, pp. 61-68, July 1991.

Morgantown, WV 26505

I
I1t~h Annutal Natrunnal Cnnf.~r/nnee on Ada Technology 1993 78

MarprethaW. Price; MowitainNet, Inc., 2705 Cram-
beMr Square, Morgantown. WIV, 26505. Sba Is a Software
Engineer/Librarian in MountalnNet, Inc., wuoing on the
NASA/AdaNET projmct She received BS (1990) and MS
(1992) degrees in Computer Science from West Virgnia
University, Morgantown, West Virginia.

Robertliaddoo.Torry;M NfntainNek Inc., 2705 Cran-
berry Square, Morgantown, WAV, 26505. tie is a Software
Englneer/Uibrarian in MountainNet, Inc.. currently work-
ingon the NASA1AdaNLTT project. He receved BA (19S4)
degree in Mathematics from West Liberty State College,
West Liberty, West Viiginia, a&W a MS (1988) degree in
Computer Science, from West Virginia University,
Morgantown, West Virginia.

79 11th Annual National Conference on Ads Technology 1993.

!!

Engineering Environments & Emerging Standards

I Moderator: Frank Belz, TRW

* Panelists:

I
I
I
I
I

I
I
I

I
I

I
I
I 11th Annual National Conference on Ada Technology 1993 80

Ada9X

Moderator: Chris Anderson, US Air Force

Panelists:

81 llCh Annual National Conference on Ada Technology 1993

Reuse Education

Moderator: Rose Armstrong, DSD Laboratories

Panelists: Dr. Dave Eichmann, University of Houston, Clear Lake
Dr. Charles McKay, University of Houston, Clear Lake
Bob Saisi, DSD Laboratories

5 Linda Saus, EWA
Dr. Francis Van Scoy

1
I

I
I

I
I
I
I
I

I
I
I 11th Annual National Conference on Ada Technology 1993 82

AdaSAGE

Moderator: Joan McGarity, COMNAVCOMTECCOM

Panelists: Howard Stewart, EG & G Idaho Inc.
David Cuneo, Naval Computer & Telecommunications
Capt. Jerry Depasquale, US Marine Corps
Am Hollom, Standard Systems Center
John Taylor, Software Development Center, US Army

8

I
S~I

I
I

-. ' 83 11th Annual National Conference on Ada Technology 199131

• ": •.. !.•• • • • -• •F•...... i. i ••• :: : •: ::• /::• ,: ,• : / • •••

/

I
I Government Training for Ada & Software Engineering

Moderator: Capt. David A. Cook, US Air Force Academy

I Panelists:

I
I
I
I
I
I
I
I
I
I
I
I
I

t

I
I 11th Annual National Conference on Ada Technology 1993 84

Software Reuse: The Next Steps

Moderator: James Hess, HQ, Department of the Army

Panelists: Phillip L. Koltun, Harris Corporation
Robert Lencewicz, HQ, Electronics Systems Center
Donald Relfer, RCI
Roger Wil!!ams, Softw3re Productivity Consortium

/e

85 11th Annual National Conference on Ada Technology 1993

I
I

USING ADA FOR A TEAM BASED SOFTWARE ENGINEERING APPROACH TO CS!

AKHtAR LODGHER & JAMES HOOPER

Department of Computer Science and Software Development'1Marshall University
Huntington, WV - 25755

Phone: (304)-696-2695 Fax: (304)-696-4646
Internet: CIS005@rnarshall.wvnet.edu

use PC based compiler environments for program
In the past year, the Computer Science department development. However all work is graded only on
at Marshall University has revised the Bachelor's the VAX.

I degree program, and given a very strong emphasis
to software engineering throughout the entire Syllabu
curriculum.' The department decided to use Ada as

I the standard programming language for the first few The objective of this course is to develop problem
courses. In later courses, exposure to other analysis and algorithm development skills. Topics
languages such as C and C+ + is also given. The covered in this course include introduction to the

* program has two capstone courses, taken in the last entire life cycle of software development, intro-
two semest .:, where a major team project is duction to the use of modular design in the problem
designed and implemented. Htnce the need for solving process, procedural abstraction, decision

I emphasizing software engineering principles, as well structures, iteration structures, basic data types,
as getting students used to programming in teams array and record structures, abstract data types, use
from the very first computer science course was of generic code, and introduction to dynamicI strongly felt. In this paper, the author preseits the structures. P'roblems that enhance the characteristics
syllabus and a method of executing the syllabu-3 of of each concept/structure are used. The problem
the CS1 course satisfying the above needs. Software solving process is emphasized over language
engineering principles are introduced early on, and implementation. An example of this principle for
after an initial boot-strapping period, tht illustrating the looping process is: "Let us study this
programming projects are done in teams. i'he Ada problem (which requires a loop construct) and
programming language is used. develop an algorithm for its solution" rather than

"These are the looping constructs available in this
Introduction language. Let us see the kinds of problems that can

St-be solved using these constructs".
CS 1 is taught as a 4 semester-hour course in a 16
week semester. The students attend three hours of The solution process of these problems is studied
lecture a week and two hours of closed lab. strictly from a software engineering perspective -

I Concepts introduced in the class are reinforced in a conducting a requirements specification and analysis,
closed lab setting. An open lab is also available for performing a modular top-down design, development
students to complete their lab exercises and of module specifications, adherence of cod% to
programming projects. The Ada compiler on a design. From the very first class, td. students are
VAX/VMS system is used. Students are allowed to told to perceive themselves as software engineers

I
1 11th Annual National Conference on Ada Technology 1993 86

-........

and designers, not programmers. Other advantages of the hands on approach incd
increase in student participation (answering "what

A team approach is used for programming questions), increase in understandability z Ad incr,
assignments - two students per team. One person of in programming confidence. However, this apprc
the team does the design and the other person places a tremendous burden on the instructor.
develops the code based on the design. For the next development and preparation of pedagol
assignment, the roles are switched. This approach examples takes a lot of time. Instruction mater
forces the designer to conduct a proper analysis and associated with text books are not availabh
dsign. The "coder" has to follow the design, electronic form. Such material must either
making only necessary changes, if required. scanned or typed in and fine-tuned depending u

the audience.
Approach

Course contents and weekly topics
The "hands on" appro.ch

Table 1 shows the classroom topics, the assignr
The amount of material covered in the class is c:",ite anC iab topics on a weekly basis. It is assumed
large. To ensure that enough exposure is given to the student has little or no knowledge of
each topic, a "hands on" approach to instruction is operating system. However, it has been found f
used. Programs which exhibit the characteristics of past experience that student3 who have had
a particular concept or structure are made available introductory course on computers in high schoo:
to the students. These programs are displayed, more patient and quicker in learning the
explained, and executed in the classroom, on a operating system.
computer using the overhead video projector. Unlike
the traditional "chalk-and-talk" approach, this The first two weeks introduce the entire system
approach not only shows the syntax of the structure, cycle of software development. A top-down anal
but also shows how the structure Is used in the and design methodology is discussed next.
context of a larger solution process. Minor process of converting a problem statement
variations and nuances of the structure are also requirements specifications, analysis and design
explained, simple problems is explained. Currently the anal

is done using data flow diagrams (DFD's) an,1

Another important advantage of this approach is to design using structure charts. A design man
show the possible incorrect ways of using the which explains this process in a step by step fasl
structure. When a student starts using a new is made available. The issue of using object-oriei
structure, the chances of him or her using it design is under consideration.
incorrectly are high. By using incorrectly formed
structures (both syntacticaly and semantically The use of functions, procedures and package
incorrect), the error messages generated are shown. introduced early on, in the context of mod'
The mechanism of using the error messages to trace design. All the intricacies of procedures
the error in the structure can be demonstrated, packages are not covered at this point. Only

concept and their usage in simple contexts
Class notes in electronic form, as well as all covered. Tlie branching and looping constructs
classroom demonstration programs are made covered next.
available to the students (on a mainframe) before the
class. The students are encouraged to bring a Exception handling and the more detailed use
printout of the notes and the programs to the functions and procedures are then explained.
classroom. This allows them to spend time listening concept of abstract data types is introduced.
and participating in the classroom discussion and not array and record structures are covered n,
be bogged down by the task of taking notes. Examples of the use of array and records

87 11th Annual National Conference on Ada Technology 1993

oU
I0

Or.)

0 0

l~t 0

o a- - 5I U U4

.~z

-~ .SOgT. jT

11th Anua NainlCneeneo-d ehnlg 93 8

0 0

I SI

o U0 0 0

89 11th Annual National Conference on Ada Technology 1993

in [' I i* 1 3 I,....

E implement abstract data types are explained. It is at the work done by him/her. Each assignment
this point that a more detailed explanation of is worth 100 points.
packages, passing execptions, etc., are discussed. 2. If the design document is perfect, then theI designer gets 100 points.
The concept of code abstraction is explained using 3. If the code follows the design and is perfect,

* the generic structure on a sorting example. Finally, the person in charge of code gets 100 points.
an introduction to dynamic data structures is given. 4. If the design is correct, and the code is
Ie creation of dynamic variables and their use in incorrect, points are taken off from the

creating linked lists ard traversing linked lists is coder.
covered. It should be noted that the concept of 5. If there are flaws in the design document,
recursion is not introduced in this co-irse. the designer loses points.

6. If there are flaws in the design, and the
Assignments and laboratory exerises coder codes it follow ing the design (resulting

in badly designed code, though correct) the
A total of eight programmning assignments are given, coder is penalized a little for not attempting
Of these, the first three are of an introductory nature to fix the design
and are done on an individual basis. The latter five 7. If there are flaws in the design, and the
assignments are done in te-ams. The first assignment, coder fixes the design the coder gets
which is not given until the fourth week of classes, additional bonus points for the extra effort.
is of the napture of a "hello world" program. The 8. The coder shall EXPLICITLY point cut the
second assignment involves some output formatting changes in design.
and the third assignment is based on the, use of .9. The coder shall not unnecessarily change the
selection statements. design. If this is done, points are taken off

from the coder.
Each assignment requires the preparation of a design 10. If design is submitted but code is not
document. This document consists of: (a) the submitted or does not work then the
problem statement (b) requirements specifications (c) designer gets the points for his/her design,
analysis - the data flow diagrams (d) design - the coder does not get any points for his/her
structure chart showing the modules (e) module code. The coder is classified as a "BAD
design specifications indicating the input, output and PERSON".
processing of each module. The design document is 11. If design is not submitted, or is so bad that
mandatory and must be submitted before starting the it is not worth following then the designer
code. The code is based on the design, and the close does not get any points for the design. The
relationship between the structure chart and the designer is classified as a "BAD PERSON".
actual code is emphasized. The simple nature of the The coder then has to do both the design
first three assignments helps in ironing out the and the code. If the coder does just the
details and links between design and code. code, he/she gets 100 points for the code. If

the coder also does a good job on design,
Beginning with the fourth assignment, the size and then bonus points are given to the coder for
the complexity increases. At this point the class is the design.
divided in teams of size two. The members are 12. If a member is classified as a bad person
chosen using a draw. One person is responsible for twice, then on the first chance available, that
the design document and the other is responsible for member is dropped from the team and the
the code. 'The roles for the next assignment are then good person combined with another good
switched. The following policy for grading team person.
based assignments is set: 13. If a team member drops the course then the

left over member will be combined with an
I1. Essentially, each person gets the graide for available member. If such a member is not

11th Annual National Conference on Ada Technology 1993 90

available, then the remaining member must concepts learned in the classroom. The number oi
do both the design and the code. assignments may be reduced by one or two by

combining concepts. The CS2 course based on this
The team policy ensures that the designer conducts approach of CS1 is currently under preparation.
a proper analysis and design and the coder
understands and follows the design. Initially, some References
friction between the team members was observed,
but after a while, the members were able to work 1. Hooper, James, "Planning for Softiw.are
around their schedules. For larger assignments, parts Engineering Education Within a Computer
of the design and code are given by the instructor. Science Framework At Marshall University',

Sixth Software Engineering Institute
Some amount of class time and lab time is devoted Conference on Software Engineering
to discussing the assignments. The executable Education, Oct 5-7, 1992, San Diego.
solution of each amsignment is made available before
the due date. This enables the students to understand 2. Lodgher, A., 'Ada Language Design, Style
the input and output format. The students can also and Documentation Manual', Department of
test the performance of their program on certain CSD, Marshall University.
input data and compare it against the instructors'
solution. After the assignment is due, the solution of 3. Lodgher, A., 'CSI - Computer
the assignment is shown to the student, and the Programming I Lab Manual', Department
design and code are discussed. of CSD, Marshall University.

The laboratory exercises are conducted in a closed Akhtar Lodgher (Ph.D 1990, George Mason
laboratory environment. A lab manual' which has University) is an Assistant Professor in the
exercises based on the text and class material is Department of Computer Science and Software
made available. The objective of each of the Development (CSD) at Marshall University since
exercises is explained first and then the students are Sept 1990. His teaching and research interests are in
allowed to complete the work. The first few lab the fields of software engineering, data structures,
exercises familiarize the student with the operating algorithms and object oriented programming.
system and the Ada compilation environment. Most
of the other lab exercises consist of incomplete or James Hoopet (Ph.D 1979, University of Alabama,
incorrect programs which the students have to Birmingham) is a visting Professor, from the
complete, correct or enhance. University of Alabama, Huntsville, occupying the

Arthur and Joan Weisberg Chair in Software
Conclusions Engineering at Marshall University since Fall 1991.

His teaching and research interests include software
The 1 SI course was taught by the author, using the engineering (especially software reuse and the
above syllabus, for the first time in Fall 1992. The software process), programming languages and
authoi, has taught the course many times in Pascal discrete event simulation.
and h observed that the software engineering/Ada
combi ation led to better solution, designers.
Enforci g the completion of design before starting
code h lped the students understand the solution
process Imuch better. They were able to find moru
flaws ii the design. The modular design and
development helped them to quickly find problem
areas and fix them. The closed lab environment
definitely helped the students in reinforcing the

91 11th Annual National Conference on Ada Technology 1993

A COMPARISON OF ADA AND C
AS TEACHING LANGUAGES

Martin L. Barrett
M. Susan Richman

Computer Science Department
Penn Sta.e Harrisburg
777 W Harrisburg Pike

Middletown, PA 17057-4898

Abstract important goals are to produce students who are
The demands of the marketplace are causing both problem solvers and communicators, rather

some Computer Science programs to change their than simply coders. To this end, the software engi-
main teaching language from Pascal to either Ada neering goals and principles are used as a basis for
or C. This paper discusses the strengths and weak- the comparison of the languages.
nesses of the two languages in an educational con- Some of the issues to be considered when eval-
text. The goals of software engineering and general uating programming languages for instructional
pedagogical concerns are used to structure the dis- purposes are:
cussion. Availability of materials and student atti- (1.) how difficult is the language to learn/teach?
tudes towards the languags are also discussed. (2.) does the language encourage good practices

1. Introduction and discourage poor practices?

The choice of a language in a Computer Sci- (3.) is the language easy to use?

en~o program has broad implications for teachers (4.) does the language inspire or dampen enthusi-

and students. This paper discusses the pros and asm?

cons of Ada versus C as a language for computer In each of these matters, while worthwhile re-
science education. The context of the paper is the suits are often difficult to achieve in computer sci-
initial core of courses in the curriculum (usually re- ence education as with other aspects of life, to what-
ferred to as CS1, CS2, and Data Structures), Both ever extent the language assists the student and
languages offer features that make them possible the instructor, those positive results become more
choices as the support language across the curricu- likely to occar.
lure. The dominance of Pascal as the language of In addition to discussing features, there is a
choice in these courses has declined. The main coin- brief discussion of the availability of texts, compil-
petitors of Pascal for class use are now Ada and C, ere, and other resources, and of how the languages
with some usage of C++, Smalltalk, and Lisp. The are perceived by students.
marketplace has never used Pascal much, but has 2. Compron of Faturs
consistently supported C and Ada. This has lead to
the use of these languages in many schools, either Ada and C have many similar features. Sim-
as the main language or at least as an optional lan- pIe variable types, control constructs, function and
guage. Both languages have been used for medium procedure parameters and scoping, and structured
and large commercial and research projects. data types are different in the details in the two

When evaluating languages for course use, it languages, but alike enough for teaching purposes.
is important to keep in mind the main goals of Important differences exist, however, on a number
a Computer Science curriculum. The ACM/IEEE of issues. Following Booch 2, the goals and princi-
Curriculum Recommendations' offer several alter- ples of software engineering are used to illustrate
native program goals. We believe that the most these differences.

11th Annual National Conference on Ada Technology 1993 92

The following four concepts are given by Booch can't hope to be able to understand the solution at
as the goals of software engineering: understand- the implementation level. Abstraction allows stu-
ability, reliability, modifiability, and efficiency. The dents to focus on problem-solving, rather than the
principles of software engineering that Adlow these details of the implementation.
goals to be met are discussed below. Both languages have facilities needed to build

Unde•bwabmilty custom data types and to mot~ularize programs.
Quite often, beginning programming students Logical data types such as linked lists and trees

(and advanced students also) enjoy the challenge can be built in most structured languages, how-
of communicating in the somewhat alien language ever, and is not discussed further. Modularity is

understood by computers. If they enjoyed writ- handled somewhat differently in each language.
ing clear English prose more than technical jargon, For example, C does not allow nesting of func-they would probably major in one of the humanistic tions, while Ada does. In C, a function called onlysthewudi probatr thanomputer scieone. Ift's nanisc from inside one function, is still visible to other func-studies rather th an com puter science. Ites not an t o sr t e h nb i g pi a e d l o sp o e
accident that. the descriptive phrase ust..l is, "play- tosrte hnbigpiae d lospoeing withat e computer.i dures to be nested, so that modularity and need-to-ag hight he level. lanuagwhcknow inforamtion hiding is achieved.

By using aFunctions can be grouped into files for sepa-
imates English prose, a student is removed from Func tion in be gu ages Typa-
the alien feeling of having to think at the machine rate compilation in both languages. Typically, C
level. Student are given the tools and language to function prototypes are placed in a header file that
communicate meaning and intentions to whomever is included by other modules. Ada uses an inter-
is reading and maintaining code. Writing readcble face definition for a module. The mechanics are
code is encouraged, different, but the effect is the same.

Ada is sufficiently readable (with careful choice C can provide a measure of information hiding
of identifiers) to be mostly self-documenting, com- through the use of separate compilation modules.
ments being used primarily to explain the non-ob- Header files provide function prototypes and vari-
vious. Comments can be a two-edged sword in code able type information to other modules. The de-

with a long lifetime; if a maintenance program- tails of the data structures themselves can be kept
mer does not also modify documentation to meet within the modules. Abstract data types are sim-
changes in code, the documentation becomes incor- ulated through the use of pointers to data struc-
rect. tures and providing only those prototypes neces-

The sometimes obscure syntax of C can add ad- sary to manipulate those data structures. How-
ditional layers of complexity to the problem-solving ever, since the pointer can be used to access the
activity. C code can suffer without discipline by data structure's components, and the compcnents
the programmer, since C is not inherently self-doc- can be found in the header file, true data abstrac-
umenting. Many examples exist of C statements tion is not possible.
which even an experienced C programmer would Polymorphic data structures (those that are
find difficult to decipher. This often inolves point- type-independent) are possible in C by using void
era, arrays, and functions, such as int *(•f(int) To pointers. Code that operates on such structures
some extent, C programmers consider this kind of cannot use on any data stored in the structures.
code as a badge of honor. Instructors should not en- This is not enforced by C but relies on prcgrarnmer
courage this kind of code, of course. Similarly, weak discipline.
typing in C allows variables to change, chameleon- In Ada, one can easily construct abstract data
like, from one type to another at the programmer's types using packages, sroving the information hid-
whim. ing problem. Only the public interface is accessable

At a higher level, the data structures and mod- by calling routines; private procedures and data
ules of a program must be easily understood. If you types are not accessable. ADT's are one step away
can't understand the problem and the solution in from objects.
terms of the problem (i.e. at tCe abstract level) you Pllymorphism is handled in a different way in

93 11th Annual National Conference on Ada Technology 1993

I- / - S

/

Ada, using generic packages and instantiation in Exception handling is provided in C by includ-
the appropriate data type. ing the errno and signal header files. Usage of error

There are no inherent restrictiens on whether codes and signals is rather esoteric and is usually
the functions in a C compilation module are related omitted from beginni;g courses.
to one another. The cohesion of the module is left Exception handling is used frequently in Ada
to the programmer. Likewise, different modules and is quite helpful in finding source of errors. Pre-
may be related to each other by functionality or by defined exceptions are readily caught by the sys-
data structures if the programmer chooses, allow- tem, and students have options in handling excep-
ing a high degree of coupling. In Ada, packages tions. Compilers, though, could be more helpful in
provide a natural structure for encapsulating log- giving details of conditions under which exceptions
ically related types and subprograms. The use of were raised.
packages encourages logical structuring, but as in
C, there is no enforcement ofhigh module cohesive- Modlabi',ty
ness or low intermodule coupling. Since these are Modifications to code must have only small, lo-

design issues, an instructor must enforce appropri- cal effects - "controlled change", as Booch says. The

ate standards. key to controlled change is structured, modular de-
sign. Almost any rmiodern programming !anguage

R~fllbIIlly supports structured programming and modularity.

Ensuring that a program can prevent mid/or As noted above, C dnes not allow nesting of iunc-
recover from errors is a key to producing quality tions; all functions are at the same level. Modules
software. Overall software quality assurance is - separate compilation units - are supported.
probably beyond the scope of the first few program- Several factors limit the effects of rr ,dularity
ming courses, but several important issues should in C. The fact that global variables are allowed is
be covered. naturally an inhibitor to controlle3 change. Vari-

Type checking can ensure that certain types ables may be global to a program by placing them
of errors are prevented. C has weak type checking. in a header file or by declaring them as external,
For example, an enum (enumerated) type is treated or may be global only to the module that they are
as an integer, so that an enumerated variable can declared in.
be passed in place of an integer parameter. Since C In Ada, modularity is enhanced by packages
compilers allow this, the lint precompiler must be and facilities for separate compilation. By devel-
used to detect it. C also lacks the ability to declare oping the specification for a package and delay-
subrange types. Out of bounds errors can easily ing consideration of the body's implementation, the
occur, as in array references. Promotion of numeric student can concentrate on problem. solving. This
data types within expressions is often automatic, in turn supports top-down design.
using a progression from integer to float to double.
Manual promotion is also possible, as in (floa4)i. Effideiny

Ada has strong typing. There are several con- There are several interpretations of efficiency.
sequences of this fact: (1.) Safer code. The sys- The one most often used is time related: speed of
tem catches faulty data and informs student rather execution. A second is space related: size of data
than using the data in calculations, making code structures and overall code. The trade-offs between
easier to debug. This requires clear thinking re- these tw,,- are usually diecussed in the Data Struc-
garding appropriate data types and allowable op- tures and Algorithms course(s). A third meaning is
erations. (2.) More thinking about design and data left to Software Engineering: efficiency of the de-
types is required before coding. (3.) Programs can velopment cycle. This is related both to the ease
be more tedious to write because of(2). (4.) Type of program development and to the ability to reuse
checking across compilation units assists in build- code.
ing modular code which can be integrated readily. Students oftei, become overly concerned with
Monolithic code-is inherently more difficult to de- the efficiency of code, sometimes focusing on at-
bug. tempts to achieve marginal increases in speed or

11th Annual National Conference on Ada Technology 1993 94

savings in memory at the expense of more intpor- develop modules to be used as basis for ultimately
tant goals such as understandability or modifiabil- larger systems. (3.) Maintainable code can be mod-
ity. Recognizing the commonly applicable "90-10 ified (or even made generic) to relieve the tedium
Rule" (90% of execution time is spent in executing of doing "the same stuff with only a few modifica-
10% of the code) the student can perhaps be per- tions.".This is especially helpful in the Data Struc-
suaded to isolate the expensive 10% of the code, tures course.
and concentrate on optimizing that without sacri- While not appropriate for students to design
ficing other desirable traits of the remaining 90%. and write in CS1, simple generic units can be pro-
The modularity features and adherence to inter- vided for the students to use. This promotes think-
faces of Ada units provide powerful support for this ing in terms of abstractions and about common
approach. properties and algorithms.

On the other side, sometimes instructors tend
to lose sight of the importance of making efficient 3. Instructional Concerns

use of the student's time, energy, and enthusiasm. The difficulty of teaching a language depends,
Programming assignments should ideally be de- of course, on the audience. Experienced program-
signed so that they challenge, without overwhelm- mers have a context within which to place new
ing, the student. There should not be an excess of ideas; conversely, some old ideas may need to be
tedious detail to blur the new concepts. The strong unlearned. For a beginning language, one would
typing of Ada often seems tiresome at firet, but hope to encourage good habits and discourage bad
for understandability and reliability, that is prefer- ones.
able to the weak typing in C which allows vari- The basic cons'tructs of each language are quite
ables to change from one type to another. When similar. Variable declarations, looping, decisions,
you violate the rules in Ada, the compiler informs and procedures are handled similarly. A number of
you frcthrightly. If you unintentionally violate the differences have been discussed previously; several
rules in C, the compiler proceeds blithely, and you more are offered here.
may have no idea that your results are meaning- Input/output is complicated in Ada by the need
less, or why. to instantiate generic I/O packages. For beginners,

The greater reusability of Ada code encourages the instructor needs to provide an "Easy-IO" pack-
and supports the building of modules which can age to ease this. C's I/O is more straightforward
readily be incorporated into larger systems. Such for beginners. There are simple formatting rules

/ systems can approximate applications in the "real" for all types, provided the stdio header is included,
world more closely than typical programming as- that allow I/O without too much effort.
signments. Parameter passing in C is complicated by the

Code reuse in C is accomplished via libraries, pointer notation. Rather than Ada's designations of
Related functions can be gathered together in a out toreturnvalues, C requires that a variable's ad-
module, then compiled and stored as a binary mod- dress be passed using the & operator and received
ule. C handles many simple tasks by this method using the * de-referencing operator. When com-
rather than including language primitives. There bined with the need to pass variables that are al-
are libraries for mathematics, string operations, ready pointers (as in linked list processing), this is
and file operations, among others. Users can create quite cumbersome. Ada allows any type of variable
their own libraries and often do - for vector func- to be passed - - record, multi-dimensional array,
tions, image and signal processing, and so on. The access types, private types, or even task types. Ac-
amount of reuse of these libraries is low, however, cess types provide dynamically created variables,
with users forced to write their own libraries if a similar to C pointers but strongly typed.
source cannot be found. While it is possible to write cryptic code in any

Software components in Ada can be re-used language, C has the reputation of encouraging such
on several levels: (1.) Code can be supplied to a code. Programmer discipline is needed more than
student to use in application. (2.) Students can in Ada to write clear, concise, modular code.

95 I1th Annual National Conference on Ada Technology 1993

4. Availability dents used it and felt comfortable doing so, real-
izing that they were writing mo'e reliable code.
Input and output were rated as somewhat difficult

concern it was previously. Introductory texts and in Ada, at least for beginners. In C, it was easier
data structures texts are now widely available, as to format output data without worrying about in-
are a fair number of Software Engineering books tantiatioutput)daca Aeth e student a d
using Ada. The Ada Information Clearinghouse stantiating I/0 packages. After the students had

provides a listing of current Ada books (over 130 in more experience with generics, this was less of a
the latest list). The Catalog of Resources for Ed- problem.C was regarded as a more "powerful" languageucaton n Ad an Sotwar Eninering~, lso than Ada. This mispercep~tion related to being able
from the Ada IC, is a list. of courses offered in Ada thandle low-lev eprogramm ing asle

at colleges and universities. Books using C are also manipulon, i b otain Ada. T s k in p
readly vaiabl. Fo oter oures, houh, ei- manipulation, in C but not in Ada. This kind of pro-

readily available. For other courses, though, nei- gamn s nfcpsil nete agae
therlanuageis ommoly sed.Adacontnue to gramming is, in fact, possible in either language.

tuffer language iscommonly use. af dab, cteasy to uPointers were also noted as a powerful feature, but
suffer from the scarcity of affordable, easy to use thseplarigcveomnputeConer

compilers and PC environments. There are several thectey warnin ed.

PC Ada compilers available. There is a freeware correctly was mentioned.

Ada interpreter for workstation environments, and b. Conclusions
a freeware Ada compiler will be available soon. C is When comparng programming languages, per-
normally the default language in workstation env!- sonal preference plays a large part. In determining
ronments, so compilers are normally included with what language to use to implement a project, the
the system software. There are a number of popu- presence or absence of special features may be criti-
lar PC compilers for C that are affordable for stu- cal to efficient implementation, or even to the possi-
dents. bility of implementation. For instruction purposes,

S. Student Perspectives though, there are different considerations. This pa-
per presented some ideas relevant to instructional

A small group of students who had experience languages from a software engineering framework.
in both Ada and C were interviewed on their views There are several advantages of Ada over C as
of the languages. Despite the small sample, several a teaching language. That C requires programmer
interesting points were made. discipline to achieve similar effects as Ada shows

Overall, Ada programs were easier to read. that Ada is the more natural language for use in
Programmer discipline, the students realized, was instruction. Self-documentation, an emphasis on
a key to writing readable C programs. This was modularity, and greater reuse of code are all ad.
also true of other goals, such as modularity, tight vantages of Ada.
interfaces, and type checking. In C, most of the So why choose C? Marketplace pressures en-
students could not overcome their desire to use un- swe its survival, but that is not enough to choose
derlying data type when using enum variables, for it as a teaching language.
example. In fact, while Ada's strong typing was
seen as an overall advantage, most found it some- 7. References
what confining. (1] ACM/IEEE-CS Joint Curriculum Task Force,

There was general agreement that packages Computing Curricula 1991, Feb. 1991.
and generics were a powerful tool in Ada that C [2] Booch, Grady, Software Engineering With
could not match. The resulting modularity of their Ada, 2nd Ed., Benjamin Cummings Publish-

programs was cited as an important factor in de. ing Company, Menlo Park, CA, 1987.
[3] Catalog of Resources for Education in A-

signing programs. In addition, focusing on the da and Software Engineering, Ada Infor-
procedure/package specifications made it easier to mation Clearinghouse, Lanham, MD, 1992.
handle information hiding.

Exception handling was superior in Ada. Since
it is an inherent part of the language, all the stu-

11th Annual National Conference on Ada Technology 1993 96

The TIPSE: An educational support environment

M.B. Ratciffe, B.R.Whittle, M.F. Bott & T.J. Stotter-Brooks
University of Wales, Aberystwyth

Abstract it difficult for them to practise everything
they are taught.

This paper presents an integrated envi- The environment being developed by the
ronment that is under development at the Software Engineering Research C-roup at
University of Wales, Aberystwyth, with the Aberystwyth is capable of supporting most
specific goal of supporting the teaching of of the software deveopment process. It

.software engineering'. The environment will eventually provide students with tools
presents users with a fully integrated tool to support design, coding, project manage-
set that addresses many aspects of the ment, document production, verification,
software life cycle. To a large extent, the validation and testing.
environment has been developed through The environment ia far more than a
the reuse of existing software. collection oi integrated CASE tools !21.

The paper is divided into two parts. First, It has been designed to be used in a
the technical details are presented This is way which demonstrates many of the
followed by a discussion of the educational concepts of software engineering in. a
aspects of the environment, its application practical and educational manner. For
to a number of different courses, and an this rea.ion, it is known as the TIPSE, an
evaluation of experiences to date. Integrated Project Support Environment

for Teaching.
Users of the TIPSE are able to experience

1 Introduction first hand the benefits to be gained from us-
ing and developing software within a fully

Software Engineering is a common theme integrated environment; an environment

running through all of the courses offered that is currently integrated at the !evel
by the Computer Science Department at of database and user interface but which

the University of Wales, Aberystwyth; will be ultimately integrated at the level of

it is evident in the emphasis placed I'ocess.

on design, quality assurance and project The current releasc of the TIPSE is already
management. The introduction, in 1986, being used by students and its effectiveness
of Ada as the main programming language evaluated. P. is intended that new tools
has enabled students to apply some of the will be added and existing ones enhanced
design principles that they learn, but the until the TIPSE becomes suitable for
lack of specific support software still makes use, not ouly for unuergraduate students,

but also for participants on advanced
'Parts of this paper have previously appeared i software engineering courses. To satisfy the

an article [I) in the Software Engineering Journal
and are reproduced 1tt by kind permission of the different experience levels of its users, all
editors. releases of the TIPSE will have separate

97 l1th Annual National Conference on Ada Technology 1993

modes of operation for both naive Pnd just one facility provided by the TIPSE.
sophisticated users alike. Tibý system Consistency of interaction of all tools with
is inherently multi user because of the the user is r. very powerful integrating
need to provide effective support for group principle. Users should be able to move
project work. from one tool to another without having

to familiarise themselves with alternative

methods of interaction. It is not desirable
2 An integrated approach for users to undergo retraining every

time a new tool ir provided within an

The widespread adoption of structured environment, indeed thi, principle shcald
methods by software engineers together apply not only to different versions of
with the increased availability of compara- a particular tool bat also to completely
tively chcap powerful workstations has lead different tools. Although this is important
to a proliferation of CASE tools available in all environments, it is particularly
on the market. Although there are now relevant irom a teaching perspective.
tools to assist in almost all aspects of Obvioucly a graphical design editor and
software development, few address more an Ada compiler cannot present identical
than a very limited number of stages within interfaces to the Lser, but the 'principle of
tie software lifecycle. Consequently a minimum surprise' should hold; in other
typical user will have access to several words, the same user a.-tion should have
different CASE tools working on several predictably similar effects within differeAt
different platforms. The transfer of data tools. This means, for example, that mea.i
from one -`ool ta another is often difficult selection should always be done in the same
and maintaining consistency between the way and that users of the tools should
different tools is alwcat impossible. not be presented with different styles of

user interface by different tools. MicroSoft
The idea of supporting tool interworking Windows 3 is an excellent example of an
is certainly not new. In 1980, the environment which exploits this principle
Stoneman Report [3] promoted the idea very elfectively.
of using a project detabase to hold the
products of the software deve!opment There is an increasing interest in the role
process. Such a database would be of process modeling as a third axis of
all encompassing, storing everything from integration (see [7] for example). Just
project plans a&nd initial specifications how far this is appropriate in a teaching
through to object modules and test dala environment is something that we are
sets. The relationships between the objects currently investigating.
would also be captured and tools would
only be able to access the information via
the database. Over the last ten years, 3 Foundations of the envi-
much work has been undertaken in this ronment
area particularly by the two international
tool support interface projects PCTE [4] The Software Engineering Research Group
and CAIS [5, 61. The need for a tool at Aberystwyth first began work in the
support interfaces is now widely accepted area of integrated support environments
and forms the basis for our development of back in 1984 as a partner in the
the TIPSE. Al ey Eclipse consortium [8]. The

Integration at the level of the database is second generation IPSE produced by this

11th Annual National Conference on Ada Technology 1993 98

consortium has since been developed and which simply recocd details of software
exploited commercially by IPSYS Software products held within a conventional file
plc, in the form of the Tool Builder's Kit store, the entity model actually stores
(TBK) [91. The influence of a related the objects within the database itself.
project, PCTE (Portable Comm~on Tools Specifications, source code objects and
Enviroiment) 2 , can be seen clearly in the even program libraries are all held as
development of Eclipse and has been an ind'vidual database entities. The links
import•,nt consideration within the TIPSE. between these objects, for example those

Initial ideas about the TIPSE were which exist between an object specification
strengthened by our experiences on the and its implementation, are stored as

ESPRIT funded DRAGON project [10] in actual links within the database.
which we developed a prototype structure
editor capable of supporting both textual
and diagrammatic views of a program from A further advantage of adopting the PCTE
a single underlying data structure, model is the strong typing that it provides.

Throughout our collaborative efforts, one Through the object management system
unifying theme has beer that of software (OMS), the user is able to define and
reuse. It is not surprising therefore that the manipulate objects but only in strict
TIPSE is being developed as far as possible accordance with the rules defined for the
through the reuse of existing components. particular object types. These rules,

At the heart of the TIPSE lies the TBK that is the properties of the information
tool support interface. It consists of types, are defined in the form of schema
libraries of generic facilities which we definition sets which are used at run-
have used to implement our tools. Tools time to enable visibility over the database.
produced in this way are normal Unix As will be described later, these schema
tools which coexist with all other Unix definition sets are fundamental to the

tools. All of these tools present a common provision of multiple views and the support

user intcrface and share common database of incrementality within the TIPSE.
access procedures, so enabling a high
degree of untegration. Though the current
release of the TBK is stand alone, a As a refinement on top of the PCTE data
decision has been made that future releases model, the database provided by TBK
of the TIPSE will be available on the permits a fine grain definition of objects
Emeraude implementation of PCTE. in the form of a second tier. In this way it

Fig. I illustrates the main component parts is possible to detail the contents of certain
of the TIPSE. object types; Ads source code might be

stored in the form of a syntax tree, for

Integration through the database example. Similarly an object at the first
tier might be defined as a deliverable

The TBK database at the centre of document; the second tier definition of such
the TIPSE closely follows the entity- an object then defines the structure of
relationship-attribute model of PCTE. Un- its contents, the breakdown of individual
like relational database implementations chapters into sections and paragraphs.

Facilities for accessing and manipulatingIPCTE has been recently accepted &a an ECMA
(European Computer Manufacturers Association) the objects at both levels are provided
standard for CASE tools, through a single unifying interface.

99 11th Annual National Conference on Ada Technology 1993

I

~User Layer

Manaeclment Preparation
.ToolsTol0" Programming Gen.-ric Function Layer Design/ T;ppon rt Method

Is/, Support

2 Figure 1: The TIPSE architecture

Itegration through the user inter- into program code as one might expect.
Iface Instead, the interaction style and layout of

all tools produced using TBK is described
The becOnd axis of integration within the by meas of the 'Format Definition
ITIfeSE is that of the user interface. All Language' (FDL). Using this language, the

f of the tools interact with the user through tool builder is able to give a specification
a set of high level interfaces provided detailing layout and functionality of the

by TBK. These interfaces ensure that a uter interface. FDL does not just define the

consistent user interface is provided in a static appearance of a tool; it is also used to

device independent way. asociate operations with the interface, for

aTe power of the user interface is achieved example, the action to be executed when

by separating the front end from the rest the user clicks on a button.

of the tool. This idea is based on the The FDL definitions are held in a separate

philosophy that a tool simply supplies and text file which is interpreted on execution

demands information to and from the user; of the tool. As the tool starts up, theit need not be concerned with how this required user interface is generated as

information is handled. For example where specified by the FDL definitions. If the
a tool wishes the user to select a value from programmer is unhappy with any aspects
a set of possible values, the user might of the user interface, the FDL definitions
be asked to choose from a menu with all can be easily altered and the tool re-
options on display, cycle through a set with invoked to show the new layout. No
one at a time on display, or type a value recompilation or rebuilding of the tool is

j wh;ch is then checked for existence in the necessary. These dynamic aspects of FDL
permitted set. make the user interface facilities of the

To achieve this separation, calls to the TIPSE very powerful and enable users
interface components are not hard coded within the environment to successfully

FIN

11th Annual National Conference on Ada Technology 1993 100

/

develop tool interfaces in a very short held within the database. The design
period cf time. editor presents a graphical view of these

The high level user interface primitives objects; the structure editor presents a
have been implemented to run under textual view. By manipulating the on-

the X Window system [11]. This is a screen representation of an object, the user

particularly important feature as it enables ir actually altering the database.
the environment to include tools which run These meta-tools have been used to build
on hardware configurations other than Sun tools in a fraction of the time normally
work stations, the original environment required. They form the basis of a
of the TIPSE. The TIPSE may include number of high~ level tools many of which
software which, though running on a PC, are still under development, that will
interacts with the user sitting at the Sun help ensure the student obtains maximum
work station. Such PC applications might benefit from using such an environment.
be supported by DOS emulators running The tools that are available in the current
on the work stations. It is expected release of the TIPSE include method
that a number 'of project management support tools (including diagrammatic rep-
tools including Microsoft Project iýill be resentation), programming support tools
supported in this way. Whatever method (such as programming language structure
of implementation is used, as far as th Ie user editors), version control and basic project
is concerned, all of the tools will appear to management tools.
work on a single platform.

4.1 The TIPSE front end

4 The meta-tools -build- The facilities offered by the TIPSE are
ing blocks for the T71i'SE all accessed through a centralised control

panel which has a similar appearance to all

The generic function layer of TBk (see of the other tools within the environment.

fig 1) provides the TIPSE with a number In addition to utilising the user interface

of powerful meta-tools which we havý used primitives, this uniformity of user interface

to generate a closely integrated tool ýet. has been achieved by the adoption of a
standard interaction metaphor The TBK

*A generic design editor can be instantiated control panel idea [8, chapter 61, follows the
to provide diagramming support for all analogy of an interface to a complex piece
aspects of software engineering, from of hardware, like the operator panel at eL
simple data diagrams to more complex rep- power station; the user interface provides
resentations used by a structured method. interaction possibilities in the form of
This editor not only provides operations buttons, menus, state selectors, indicator
for manipulating diagrams, but also checks lights and signs. The similar appearance
that the design conforms to the rules of of the two tools depicted in Figs 2 and 4
the method. With a little specialised demonstrates this consistency.
custcmisation by the tool builder a very In support of an incremental philosophy

powefultoolcanbe podued.adopted by the TIPSE, the control

A similar, and complementary tool to the panel has been designed to offer facilities
design editor is the generic structure editor. dependent upon the skill levels of the
Both tools simply present to the user student. Initially the facilities include only
different representations of objects that are basic editing operations and programming

101 11th Annual National Conference on Ada Technology 1993

Ap

Ii
0 CS _77 __ _______ C2

SCurnt Directory

S_ Change Control

UI MMO Tool mum

13 Location of SM Directory
/tzpjant/home/seg/part a/mpt/ rtzPS~vork SCCS User

a File

1 ile Wnormationf jQ= his op.raticM WOw

Figure 2: The TIPSE change control tool

support tools, but as the users become a structure editor has been fundamental
more experienced, the available operations to the design of our current tool set.
are enriched to include configuration Currently Ada is the only supported
control and project management. language, but developments are being

planned to support languages ouch as C

The TIPSE as a programming and C++. Fig. 3 shows an example
Te roe nTIPS a roginvocation of the editor, for a partially
environment developed Ada program.

Although the TIPSE now provides tools As with all applications, the schema
to support many different stages of the utilised by the stiucture editor defines the

software development process, develop- format of the underlying database and
ments were initially directed at supporting thereby enables other tools to use the data;
programming. Even before the idea of users are able to invoke a related support

the TIPSE had been developed, a number tool to obtain HOOD-like graphical views
of research projects at Aberystwyth were of the Ada programs.
already providing support environments

for the Ada programming language. It is anticipated that users of the TIPSE
will invoke the design editor to specify theThe most significant of these environments, high level design of software systems; atIjDDT [12], developed under the DRAGON o this level a pictor'al view is often more

project [10], supported the notion of beneficial in illustrating both its internal

multiple views. Though only a prototype, structure and the relationship with other

the user of this tool was able to textually progran the ation y wth the

specify an Ada program and then, for program modules. At any stage the
exampleif re t A a p grapcand ven, tor user may switch to a textual view andexample, request a graphical view to continue with the specification using the

show the program's relationship with other stutue eito De specification
libaryunis.structure editor. Detailed specification

S library units. in diagrammatic form, down to the level
The idea of utilising multiple views within of individual program instructions is not

11th Annual National Conference on Ada Technology 1993 102

W 2.3.2

priunt

AD& STRUCTURE EDITOR
--- <<VSW M•AGER >>

---Edit Package Specification

generic
type ITEM is private

package STACKPACKAGE is

type STAc•K is array 1I 10 of ITEM

OVERFWW : exception

UNDERFLOW exception

procedure PUSH (X: in ITEM

function POP return ITEM

private

end STACK_PACKAGE S

/

Figure 3: The structure editor: An Ada editor for part of an Ada program

103 11th Annual National Conference on Ada Technology 1993

thought to be desirable [131 and will not Specific support is currently provided forIbe supported. The current facilities within the HOOD [16) method in the form of
the TIP" E have not yet reached a level of the IPSYS HOOD tool set [17]. Used

rMfunctionality to enable evaluation of this widely by the Aerospace industry, this is
approach. a well respected tool kit that supports an

increasingly popular method. Based on

Support for software reuse the underlying TBK facilities, the toolsU are fully integrated with many aspects
During the Eclipse and DRAGON projects, of the TIPSE and have very similar
much work was undertaken in the field of front ends. Using this environment, the
software reuse [12, 14]. It should not come emphasis of the teaching can be placed on
as a surprise therefore that the TIPSE the example method rather than on the
places a lot of emphasis on software reuse. complex support tools.
This is shown both in terms of the way in
which the environment has been developed
but also in the support that it provides
for the users. Our instantiations of the
structure editor and the design editor have
been designed to support software reuse Document PreparationI and to provide the user with access to a
library of reusable components [15]. The
available components are compatible with One of the areas to benefit most from anIboth tools and can be viewed in a textual integrated database should be that of doc-
or graphical mode. umentation. As traditional environments
Our experience has been that students seldom support any tool interworking,Iworking through the TIPSE have found system documentation is often out of step
the environment complimentary to the with development. With the facilities of
emphasis placed on reuse within the soft- an IPSE, it should be possible to solve
ware engineering courses at Aberystwyth. this problem. To ensure compatibility,
By utilising the library of components, design specifications can be linked into the
students are better able to appreciate the specification of component interfaces, for
benefits to be gained from both designing example, and textual and diagrammatic
with reuse and designing for reuse, specifications can simply be different views

of the same data. Initial investigations into

Design method support this area look promising.

No software engineering course would be The environment already includes a struc-
complete without discussing the role of ture editor to support the development
design methods.Whilst it is possible to of high quality documents using the
teach the theoretical aspects of a design IA'thX document preparation system [18].
method within a reasonable period of time, Furthermore, the adoption of SGML [19)
the l'earning hurdles for the support tools is under consideration. Through the use
often negates their practical us*6ge. The of templates, this facility should provide
uniformity of user interfaces within the the user with a standard structure for
TIPSE makes it feasible to use a number the particular type of document under
of design tools at an undergraduate level, production.

11th Annual National Conference on Ada Technology 1993 104

5 The TIPSE as an educa- front end. Designing user interfaces is

tional environment notoriously difficult and can involve a
lot of tinkering; fortunately the facilities
provided within the TIPSE make this task

The TIPSE has a rich set of high level tool a lot easier. With the growing realisation
that are ava~ilable for its users. The subject of the importance of designing user friendly
of this section is the extent to which the interfaces, this area is likely to become far
environment can be used to facilitate the more significant
educational process. The database is equally as important

Initial developments on the TIPSE con- as a stand alone facility. Students are
centrated on producing high level tools instructed on the Object Management
for supporting our undergraduate software System and how the structure of deta to
engineering courses. These tools would be manipulated is defined through the use
all have graphical front ends to make of a data definition language, detailing
them more attractive to their users. the types of objects, links and attributes
Facilities such as project management which can occur within the database. They
tools, configuration control tools and are able to investigate how the use of a
graphically-based design tools all seemed tchema grants visibility to the object types
to be desirable facilities in an educational it defines, instances of which can then be
environment. created, manipulated and deleted. Using

As the development of the' high level tools a high level language, designed to simplify

proceeded, it became clear that the lower the task, students are able to experiment

level facilities, the &c~ual bivilding blocks in defining schemas and in populating the

of the envir-nment, were '.o become very database.

important to the teaching perspectives of Fig. 4 shows a simple management tool
the TIPSE. In addition to ferming the that was initially developed as a student
foundations of many of the higner level project. The tool provides some basic
tools, the database and user interface facilities for interrogating and updating
facilities have much to offer the trainee the database and has been enhanced
software enginee:. Within the TIPSE, not with the addition of a simple front
only are stude its able to gain first hand end developed using FDL. Other student

experience of using integrated tools, they projects have lead to the development of

can now also use the raw facilities for more sophisticated front ends to the model
designing and implementing their own. using the generic tools; design editors and

Prototyping is now considered to be structure editors now piovide a complete

a very important aspect of software suite of tools.

development. The advantages that the One of the main educatiohal benefits of the

technique provides in establishing user TIPSE is its open architecture. New tools

requirements, for example, is widely can be added to the envir nment becoming

accepted. Our experience of using the fully integrated through the sharing of

TIPSE for advanced software engineering common schemas. To suplort this facility,

courses has been that the user interface schemas utilised by the pr defined TIPSE

- facilities are very well suited to rapid tools are also available to o0r student users

prototyping. After an initial learning thus enabling them to write new tools to

period, we have found that students can interact with the database. Modifications

very quickly produce a fairly sophisticated can be made to database objects and the

105 11th Annual National Conference on Ada Technology 1993

o Di~etezya $=Uta now@

PROJZCT MANAGE 'NT L

TEAM MEMERS TASKS SCHEDULEC

a Tmeskymeft-UMMO a ?a& Nam. a TOM HDtai
lFiku 4g Project "0 "too

efecs Cnvsigaed Osye inokn on fte th igaecol erplcdb

Positiono it p p

a Ailia a start Raw
INO 1iC0-06-92

0o1-12-92

0 Afteal Mde Date

a Tenr metltr ane

rum MW

Figure 4: Project management tool

effects investigated by invoking one of the the language could be replaced by one
predefined tools. This kind of exercise has supporting a larger subset. A more subtle
largely been conhned to our more advanced example might be the introduction of
software engineering courses but the results explicit version control features.

thve beenE verypositine. t uGiven our commitment to the principle
of minimal surprise, it is important that

5.1 Incrementarity an incremental change to a tool does
not invalidate what has gone before; in

Central to the learning process of the particular, the same way of manipulating
TIPSE has been the idea of incredentality. the user interface should produce the
Whilst the open architecture will enable same results and the incremented version
the TIPSE to changa u through time and should continue to operate successfully on
thus be extensible, it wiil also develop with a database developed under the previous
its users and will change in accordance vrin
with their level of knowledge and skill. In the class room, students are gradually
This quality can be achieved in many introduced to the structures of the
ways; a less complex tool could be language through a logical progression of
replaced with a more advanced tool, for examples. These examples, in program-
example, the exchange of a textual editor ming terms, explain not only the structure
for a structured editor. Alternatively and syntax of a language, but also its
a tool could be enriched by adding semantic logic. It is our intention to retain
to its functionality; a structure editor this paradigm, primarily through the use
that supports only a small subset of of a family of structure editors, a decision

/
/

11th Annual National Conference on Ada Technology 1993 106

motivated by our experience on other within a given group may use levels 3 to
research projects, such as [12]. Through 5; this means that, when students invoke
the use of these editors, the students are the structure editor, they will be offered
presented with an environment in which this choice of levels, with a brief indication
the structures they have studied appear of what each provides. As the course
to be the only structures in the language. progresses, the lecturer may change the
The user is freed from the syntax details range to allow levels 5 to 8, and so on.
of the new structures, whilst at the same
time being insulated from the other more
complex language constructs which are yet 5.2 Applying the TIPSE to un-
to be learned. dergraduate courses

The incremental concepts poee an ex- The TIPSE has been designed to be
tra burden on compatibility within the applicable to software engineers with very
environment where, for the pu:poses of different levels of experience. Ultimately,
teaching, it is important that the previous it is our intention to use the TIPSE as a
work of students is available at a later date practical basis for a number of external
so that they may learn from their mistakes courses run for industry. Until it gains
or reuse their earlier code. Fortunately the full functionality, the the environment is
schema facilities of the database and the currently restricted to undergraduate use.
generic tools available from within TBK
have made this task much easier. In the first year of their degree course,

students take an introductory course where
Incremental editors within the they learn to program in Ada and

become familiar with basic data structures;
STIPSE emphasis is also placed on introducing

The TIPSE provides a family of structure the key concepts of software engineering.
During this period, through a process of

editors, all of which rxe instantiations of continual assessment, students carry out athe generic structure editor, driven by an small number of individual projects. The
abstract syntax. This abstract syntax programming complexity is usually low,
represents the schema for the underlying for example, a menu driven temperature
data structure and is the same for alls or a conversion system, or a simple line based
editors in the family. Incrementation editor. However, even at this stage,
is achieved by changing the concrete students are expected to follow a well
syntax, which specifies wnat an individual engineered approach to the development of
editor may create and how it views the their software.
database; multiple view! both textual
and diagrammatic, are specified in this The main use of the TIPSE is at
way. The system is therefore being the level of the integrated front end
implemented such that although the which provides access to tools for design,
underlying reprtsentation is constant, the coding and execution of Ada programs.
user view of the structure can change. The incremental nature of the structure

editor closely complements the teaching
To control the incrementation, the TIPSE or clos l d c ementsute tean
allows students to choose the level at which of Ada, and should be well suited to an
they will work, within limits set by the introductory course.
lecturer. . The levels are numbered and Through the second year, the student
the lecturer can specify that all students continues to study and write Ada, a

107 1.1th Annual National Conference on Ada Technology 1993

further main application of the TIPSE nature makes it an ideal candidate
is the support that it gives for group for the final year projects whcn many
project work, an important element of students produce additional tools for the
the software engineering course. The environment. The knowledge that their
actual programming tasks are not too tvl will actually be used in the future
complicated; the role of this exercice by other students provides many with
is to focus the students attentioii on the incentive to produce a robust tool
the group and the interaction of group wben they might otherwise only produce
working. The project groups typically a prototype. The use of TIPSE based
contain six students, who liaise with a facilities will expand courses throughout
client, a staff member who also acts as the degree programme as appropriate tools
a consultant/ad visor, to develop a project are developed to support them.
specification and follow this specification
through to implementation, delivery and
acceptance testing. The facilities that 5.3 Evaluating the TIPSE
the TIPSE provides for project man-
agement, configuration management and In order to carry out a reasonable
project specification nicely complement the evaluation of any tool, it is important
material presented in lectures. Certainly, to establish a set of crriea under which
the' ease with which the tools can be used, the evaluation is to be carried out. In
comP red to the command line interface or industry such an evaluation might behard techniques, encourages the students carried out at two levels: first from theto utilise the tools. point of user satisfaction and second from

a management perspective. Are the users
Final year students attend a course on happy with the tool, and do they they feel
advanced software engineering, where they it is effective? Are the managers sutisfied
are' instructed in the principles of IPSE that the tool has provided the appropriate
technology, the development of meta tools gains to justify the investment? In
and support for programming in the large. education a similar evaluation might be
As ipart of the practical element of this carried out. with the students as users
course the students are encouraged to and the lecturers as the manegers. Student
use the TIPSE as an example IPSE. satisfaction is relatively straight forward Wo
RatIher like the medical student's skeleton, measure. If they use a tool after it has
the! student can learn principles from been introduced and then continue to use
the simple structure presented by the it when any associated assignments have
TIPSE, by exploring the make up of an been completed, then one might reaso-ably
environment with which they are already assume that they are satisfied. Certainly
familiar. Being familiar with what a to,1l students rarely need encouragement in
can do, the students can concentrate on voicing their opinions.
how the tool is implemented. A typical The educational benefit gained from using
project may involve prototyping a user a tool is rather harder to ascertain. The
interface or manipulating the database; difficult lies in establishin a control. To
such examples were described earlier in this requlty that a esticulshig o co nt spaper. request that a particular group of students

use manual techniques while their peers are
The scope of applying the TIPSE to instructed on a fully integrated graphical
undergraduate courses is not limited by the tool seems unreasonable. Moreover to
currently available toolset, its extensible be effective, such an approach might also

11th Annual National Conference on Ada Technology 1993 108

require a different emphasis in associated by both undergraduate and postgraduate
lectures. users.

In conclusion, the evaluation of the TIPSE
has largely been one of hear cay. The
environment is still in its infancy and 7 Acknowledgments
suitable techniques for more scientific
evaluation are still being sought. The work described in this paper is

a development of work carried out on
earlier projects. We are grateful to

6 Conclusion the Alvey Directorate for its support
of the Eclipse programme and to the

This paper has attempted to give a flavour European Commission for its support of

of the tools provided within the TIPSE, the DRAGON and Sapphire projects; in

rather than to detail the method of that context we must also acknowledge the

implementation. More specific information contributions of our many collaborators.

is described in [1]. The work on the TIPSE itself would not

A university education consists of a have been possible without the support of

broadening as well as a deepening of IPSYS Software plc; not only have they

knowledge; at Aberystwyth emphasis is provided and supported the TBK software

placed on rigorous software engineering but they have maintained a continuing

principles, it is hoped that the TIPSE interest in the work and contributed many

will support and enhance the perception useful ideas.

of these principles. It could appear Mr. Whittle's work on the TIPSE was
that the TIPSE provides a restrictive and supported by Research Studentship No.

over protected environment that does not 90302773 awarded by the Science and

equipe students for the situation which Engineering Research Council.
they may subsequently face in industry.
We feel that the main benefit arises when
the TIPSE is used as a support tool, References
to reinforce the principles of the lectures
rather than to give emphasis to a particular [1] M.B. Ratcliffe, M.F. Bott, T.J.

method or technique. Stotter-Brooks, and B.R. Whittle.

Though the TIPSE has now been under The TIPSE: An IPSE for teach-

development for a number of yeais, this ing. Software Engineering Journal.,

has largely been through the efforts of September 1992.
postgraduate students. Only in recent
months has full time effort been provided [2] A.S. Fisher. CASE, using software

on the project. As a consequence of development tools. John Wiley and

this method of development, the project Sons Ltd., Chichester, UK, 1988.

is continuing to follow a phased approach, [3] J. N. Buxton. STONEMAN: Require.
with the software being released in several ments for Ada Programming Support
distinct stages. At each stage the Entironments. United States Depart-
functionality is enhanced and the reaction ment of Defense, Washington, 1980.
of students assessed. The current release
of the TIPSE provides many powerful [4] Commission of the European Coin-
facilities and is the subject of evaluation munities, DG XIII/Esprit, 45 Av.

109 1 1th Annual National Conference on Ada Technology 1993

a . .I

Auderghem, Brussels. PCTE A [13] M. B. Ratcliffe. Prototyping through
Basis for a Portable Common Tool the Reuse of Existing Components.
Environment, Functional Specifica- PhD thesis, University of Wales, 1989.
tion, 1.5 edition, 1989. [14] M. B. Ratcliffe and R. J. Gautier.

[5] Washington United States Depart- System development through the
ment of Defense. Military Stan- reuse of existing components. Software
dard DOD-STD-1838 Common APSE Engineering Journal, November 1991.
Interface Set (CAIS), October 1986
(actually published in 1987). [l5) R.J. Gautier and P.J.L. Wallis.

Software Reuse with Ada. Peter

[6] Washington Peregrinus, UK, 1990.
United States Department of Defense.
Military Standard DOD-STD-1838A [16] European Space Agency, HOOD
Common APSE Interface Set (CAIS) Working Group, Issue 3.1. HOOD

(Revision A), April 1989. Reference Manual, 1990.

[7] A. 1. Wisserman. Tool integration in [17] IPSYS Software plc, Marlborough
[7] tware A.n.inera Tointegviraonme . In Court, Pickford St, Macclesfield,
software engineering environments. InCheshire, UK. IPSYS HOOD too kit,
Software Ergineering Environments. 1990.

Lecture Notes in Computer Science,

467, Springer Verlag, 1989. [18] L. Lamport. IAthX: A Document
Preparation System. Addison Wesley,

[8] M.F.Bott, editor. Eclipse: An Wokingham, UK., 1986.
Integrated Project Support Environ-
ment. IEE computing series 14. Peter [19] B. Martin. SGML: an author's
Peregrinus Ltd., on behalf of the lEE, guide to the Standard Generalized
1989. Markup Language. Addison-Wesley,

Wokingham, UK., 1988.
(9] IPSYS Software plc, Marlborough

Court, Pickford St., Macclesfield,
Cheshire, UK. IPSYS Too! Builder's
Kit, 1990.

[10] A. Di Maio, I. Sommerville, R. Bayan,
M. F. Bott, and M. Wirsing. The
DRAGON Project. In Proceedings
of ESPRIT '89 Conference, London,
1989. Kluwer Academic Publishers.

[11] 0. Jones. Introduction to the X
window system. Prentice Hall, New
Jersey, USA, 1989.

[12] M. B. Ratcliffe, C. Wang, P.. J.
Gautier, and B. R. Whittle. Dora
- a structure oriented environment
generator. Software Engineering
Journal, 7(3), May 1992.

11th Annual National Conference on Ada Technology 1993 110

I -'

I
Dr. M. Ratcliffe the academic world in 1977, taking up

i viiting appointment at the university I
After graduating in Computer Science a visiti aoin t at esunisity

fromtheUniersty f WaesAbeystyth of Missouri to assist in establishingfrom the University of Wales, AberyMtwyth a Computer Science programme. In
in 1984, Mark Ratclif'e joined the staff 1979, Mr. Bott joined the Computer
as a Research Associate working on the Science Department at the University of
Alvey funded Eclipse Project and the Wales, Aberystwyth, of which he is now
ESPRIT funded Dragon project. During Head. Since being in Aberystwyth he
this period, he carried out research in has run a number or research projects
the field of Software Reuse, the area in funded by the ALVEY programme and
which he subsequently gained his Ph.D. the European Commissions ESPRIT and
As a lecturer at Aberystwyth since 1V89, RACE programmes. He is also interested
his main interests lie in the area of in software engineering education and has
software development environments with edited a recent special issue of the Software
specific emphasis on reuse. Over the last Engineering Journal on this topic. He is a
few years hc has presented, a number of member of the British Computer Society
industrikl training courses on integrated a&d of its Professional Board. I
environments, specifically PCTE and the U
IPSYS TBK. During the academic year Email: mfb~aber.ac.uk
1992-93, Dr. Ratcliffe is working at the T.J. Stotter-Brooks
University of Puget Sound, Washington as U
part of an academic exchange programme. Tim Stotter-Brooks graduated with a B.Sc.

Email: mbrcaber.ac.uk in Economic History from the University
of Birmingham in 1989. He completedB.R. Whittle an M.Sc. in Computer Science at UW

Aberystwyth, before becoming a research
Ben Whittle graduated in Agricultural assistant on the TIPSE project in 1991.Economics from UW Aberystwyth in 1989. Mr. Stotter-Brooks is currently a research

He subsequently completed a masters in assistant on the RACE 2076 BOOST
Computer Science and was invited to project at Aberystwyth. I
proceed to research for. a Ph.D. in Software
Engineering. As well as his close interest in Emal: tjs~aber.ac.uk
the work of the TIPSE project, Mr Whittle All of the authors can be reached through 3
is also interested in Software Reuse. He is the Dept. of Computer Science, UW
a member of the British Computer Society Aberystwyth, Aberystwyth, Dyfed, Wales,
Reuse special interest group committee and UK.
the editor of the group newsletter.

Email: brw~aber.ac.uk

M.F. Bott

Frank Bott was educated at Wolver-
hampton Grammar School and Trinity I
College, Cambridge, where he graduated
in Mathematics in 1962. After graduating
he worked in the Cambridge University U
Computing Laboratory until he joined SPL
International in 1968. He returned to

I
111 11th Annual National Conference on Ada Technology 1993 1

The Rapid Development Methodology Applied to Software Intensive Projects

Lynn G. Gref
Jet Propulsion Laboratory

Pasadena, California

William H. Spuck III
Jet Propulsion Laboratory

Pasadena, California

The Rapid Development Methodology (RDM) Is an aftemative means of devo;oplng systems to
that of the vonventirnal waterfall method. RDM has been developed Independently at the Jet
2•,:lson Laboratory (JPL) but is consistent with the oblectives of the Evolutionary Development

':preach articulated by the DoD. Ada with its modem software engineering features has proven
,J be compllrentary to RDM. RDM derives from rapid prototyplng but Is distinct from it. Basic to
RDM is the deliv')ry of useful operational Increments of the system to a using organization every
nine to fhitean months. Each incremental delivery builds on the previous ones and is part of the
final delivered system. Documentation and other Integrated logistics support hems of a formal
system development are evolved so in the end the delivered system under RDM is
Indistinguishable from that developed under the conventional method. Sikrificant advantages of
RDM Include the satisfaction of true user needs, delivered system functional capabilities during
the tenure of sponsors and users, and a process that is adaptive to inging funding profiles and
user requirements. N(DM has been used at JPL primarily for the development of large software
Intensive sy!ems w'.th over 30 Incrementa: deliveries having been made. Project sizes have
ranged from $10 million spanning a few years to $100 million over a period of 10 years.

Suand making necessary adjustments in
future incremental deliveries.

This paper is about a better, faster,
cheaper approach to implementing Similarly, RDM accommodates evolving
software-intensive systems, that has or even radical changes in the roles and
been pioneered and refined by the Jet missions of system users. In the case of
Propulsion Laboratory (JPL). This new one Command Center System the mission
approach, the "Rapid Development has evolved from a focus on a tactical
Methodology" (RDM), has been engagement with the Soviet Union to one
successfully employed in the including humanitarian relief and
development of Ada-based systems, monitoring national unrest.
though it can be used with any software
language. RDM is an outgrowth of rapid Each incremental delivery is treated
prototyping concepts and is a refinement essentially as a "complete end-to-end
of the evolutionary acquisition model. requirements definition,

Implementation and deployment cycle."
RDM emp!oys incremerttal development This permits evolution of the system
and fielding of the system. User infrastructure and its functionality,
experience with the currently fielded including achieving compliance with new
increment of the system provides a basis and evolving standards (e.g. POSIX, X-
for the detailed requirme.,"r ts of future Windows, MOTIF, GOSIP, computer
deliveries. This assures user security standards) as commercial,

satisfaction at the end of the standards-compliant products become
developmental .ycle. Funding charges available.
and uncertainties, such as those depicted
in Fit.ure 1, are accommodated by fixing New technologies can likewise be
the, irrent delivery (e.g. incorporated into the system. In one
specifications, budnlets and schedules) case, a "main frame" database

management system server was replaced

11th Annual National Conference on Ada Technology 1993 112

by a RISC-based "workstation" to deliveries, the essential portion of the
achieve better system performance and goal is achieved with only a fraction of
transportability at less cost than the the effort required by the old, "single
annual maintenance costs of the old thrust" method. Additionally, some
system. Another example is the "project management items" will be
enhancement of the Local Area Network eliminated, since each incremental.
(LAN) with an FDDI-based backbone In delivery takes approximately one year
the fourth incremental delivery, from start to finish. For example, there

Is neither schedule time nor need for all
RDM and Ada have proven to be highly the formal reviews of the conventional
complementary. The objectives of the development method.
Ada programming language are to: 1)
establish a common programming Experience with RDM has lead to the
language, 2) embody and enforce modem practice of "just In time" engineering.
software engineering principles, and 3) That is, do only essential tasks and put
facilitate the transfer of software to off non-essentials. This focuses the
different hardware platforms and efforts of the staff end eliminates
operating systems. Under RDM, Ada's unneeded work. Documentation Is
embodiment and enforcement of handled on a "when" rand "as needed"
principles such as abstracdon, basis, with review comments
information hiding, program Incorporated into the next delivery.
modularity, localization, uniformity,
completeness and confirmability JP.'s experience shows that a single
directly supports the evolutionary Incremental delivery implements
growth of the delivered system. somewhere between a third and half the
Independence from reliance on specific capability resulting from a normal five
hardware platforms and operating year conventional development cycle, at
systems facilitates the insertion of new the same level of effort. Experience has
technology into the system. In fact, RDM shown that RDM allows more effort to be
achieves the "desired" benefits of Ada channeled Into implementation of
within the development lifetime of a capabilities.
single software intensive system.

RDM provides a mechanism for faster [Descript~no D
and cheaper development. First, the
important operational needs of the user First, RDM is neither rapid prototyping
are met through a prioritization that nor a version of the spiral incremental
determines the content for each development model. Rapid prototyping
incremental delivery. This avoids the is used to validate either requirements
cost and time of classical methods which or design approaches. When completed,
require the development of "every the prototype Is generally abandoned and
conceivable capability that can be the "real" system implemented. Under
imagined" to avoid discovering omissions the spiral model a system is developed In
after system delivery, increments and deployed at the end of the

development. Each increment
Successful application of RDM strongly progresses through requirements
suggests adherence to the 80-20 rule. analysis, design, implementation, test
(The 80-20 rule states that It takes and user validation. Hence, the common
80% of the total effort to achieve the reference made to it is "build a little,
last 20% of the goal.) Under RDM it Is test a little."
possible to set and achieve targets for
each Incremental delivery that are Contrary to rapid prototyping, RDM is
something less than the ultimate goal used to implement systems. The intent
(i.e., 80%). After just a few

113 11th Annual National Conference on Ada Technology 1993

5 of RDM is to make use of every product. 4. Implement the system with
Experience has shown there is some progressive formality so as to achieve
waste attributable to several factors. everything essential to sustainment
L'-e of the system results in changes to upon delivery of the final increment,
the users' operational procedures, with
subsequent modifications to system High level planning is done during an
requirements. These lead to design initial project definition phase, when a
changes and "breakage" of the delivered consensus between the developer and
capabilities. Besides basic system customer is reached on a target final
implementation, RDM incrementally operational capability (FOC)
develops the system Integrated Logistics requirements specification, a system
Support(ILS) into a full capability at architecture, an overall budget and an
the conclusion of the project. The ILS overall schedule. A modular and flexible
capability provided at each delivery is architecture is essential to support the
tailored to meet the needs of that Incremental delivery of the system and
delivery taking into account that the the evolutionary specification of system
developers provide most of the support requirements. Modem distributed
until the system is finally turned over information system architectures
to the government for operations and provide one class of examples suitable tomaintenance. RDM's incremental deliveries.

As opposed to the spiral model, RDM An overall schedule for a generic ,roject
delivers each increment of the system is depicted in Figure 2. As discu.- ied,
into immediate operational use. As a the project under RDM consists ,f a
result, a system developed under RDM is series of deliveries. Each deliver;, must
fully operationally tested and validated go through a "mini" life cycle of .ts own
prior to turnover to the government for consisting of "mini" phases. The se echo
sustainment, the phases of a conventional de -elopment

life cycle with the numbers
RDM is a specific project management corresponding to the phases: (1)
approach. It has a set of underlying Planning, (2) Requirements, (3)
tenets. It prescribes management Design, (4) Implementation, (5)
policies and procedures for system Integration and test, (6) Installation,
implementation issues such as project (7) Certification, and (8) Operations
planning, systems engineering, and sustainment.
configuration management and
documentation. The four tenets of RDM As depicted in Figure 2, the overall
are: planning (phase 1) is done once at the

beginning of the project. This plan is
1. Build and deliver the system in a updated and modified whenever
series of regular and consecutive necessary (e.g. overall budget changes).
increments. The FOC Requirements Specification is

updated as the system evolves and users
2. Actively obtain feedback from learn more what their real needs are.
actual field usage and incorporate the Each delivery begins with a mini-
feedback into the system requirements planning effort which determines the
of future deliveries, specific scope of the delivery (i.e.

system functional requirements), the
3. Involve the users in extensive budget and the schedule. Phases two
interaction throughout the development through seven are repeated once for each
cycle. delivery. And of course, the delivered

system is operated and sustained
continuously after the first delivery.
Once a delivery has been transferred to

11th Annual National Conference on Ada Technology 1993 114

_ _,_ ,/

operations, the previous delivery has
been superseded and it disappears. It Is Five formal reviews have been identified
often possible for the Project Definition under RDM. A one time Project
to overlap the first one or two Definition Review at the end of the
deliveries, frequently causing them to Project Definition Phase assesses
be called "preliminary deliveries" in overall project plans and processes. It
recognition of the lack of a complete gains the concurrence of all parties to
long-term perspective. These the project. At the beginning of the
preliminary deliveries have delivery cycle the sponsor's
characteristically consisted of Configuration Control Board holds a
capabilities which have been recognized Requirements Review to baseline the
as essential and have been delivered requirements of the current delivery.
previously in other projects. Th 'is review achieves concurrence among

all parties as to the established
Experience has shown that the time requirements for the delivery. A
interval between successive deliveries Delivery Commitment Review is held
(i.e. transfers of capability to user early into each delivery cycle to
operations) should fall somewhere demonstrate understanding of the
between nine and fifteen months. A requirements and general readiness to
series of deliveries with intervals less complete the delivery. This review
than nine months have proven to be covers system requirements, system
!mpossible to sustain1. This is due, in design, implementation plens, costs,
part, to the effort of the development schedules and risks. Near the end of
staff needed to sustain (e.g. fix each delivery cycle a Delivery Pre-Ship
problems) the previous delivery. 'Also, Review is held to establish readiness to
"too little implementation time" leads to undertake system installation,
a temptation to "cut corners" by Integration and test at the user's site.
compromising other phases (e.g. Long lead time installation items may be
Integration and test). Intervals greater shipped and begun installation prior to
than fifteen months begin to lose the the Delivery Pre-Ship Review. This
characteristics of RDM. External review covers design and
influences (e.g. funding changes, implementation status, testing
requirements changes) begin to upset thoroughness and results, plans for
the desired stability of the current testing training, operations,
delivery. A delivery cycle that fits with maintenance, costs and schedules. The
the government's budgetary cycle delivery culminates with a Delivery
permits securing full funding of the Transfer to Operations Review which is
delivery prior to the commitment to the held by the sponsor's Configuration
delivery. Thus the delivery can be made Control Board. This review serves as a
as planned without budgetary influence, system acceptance review for the
Changes in future funding impacts only sponsor and user.
future deliveries.

Indiidul icremnta deiveres eedThe RDM approach to documentation
Indiidul icremnta deiveres eedemphasizes supporting usage and

to be sufficiently small in cost. scope sustainment of the system. Documents
and complexity to forego the safeguards, evolve with increasing content as the
reviews and formality associated with system evolves. Documents are
the conventional development methods. delivered as they become available or
Otherwise, the five to eight year just in time of need. They reflect the "as
conventional development cycle cannot built" system. Document re-work
be broken. (18-24 months are within a delivery cycle is minimized.
required for the formal reviews. A Precise document suites are tailored by
similar amount of time is required for the specific needs of the project.
documentation.)

115 11th Annual National Conference on Ada Technology 1993

Project planning documents may The initial focus is on integration testingIinclude: Project Plan, Hardware employing data flow threads as a basis
Management Plan, Software Management for test procedures. Once the system is
Plan, Safety Plan, Product Assurance working as a unit the testing emphasisIPlan, Integrated Logistics Plan, Review may be shifted to requirements testing
Plan, Documentation Plan, Configuration to assure that all the individual
Management Plan, Integration and functional capabilities work as expected.ITesting Plan, Security Pian and Another environment is generated withShipping Plan. tests that emphasize operational strings

or scenarios that emulate the anticipated
Documents delivered within each use of the system. Changing the locationFdelivery may include: Requirements of the testing from the laboratory to the
Specification, Integrated Support Plan, users' site where each set of previously
Segment Requirements Specification, used test procedures are repeated
Segment Design Document, Interface creates further test environments.
Control Document, Database Design Security testing, acceptance testing and
Document, Site Concurrence user training provide additional
Memorandum, Integrated Test Plans and environments.
Procedures, Test/Analysis Report,
Security Evaluation Report, Installation Finally, the use of the system for
Drawings Package, Release Description operations by real users provides theUDocument, User Manuals and Training final test environments. For this
Materials. Figure 3 indicates the reason, the first users must be
progression of the formality of the considered as part of the test team. NoIdelivery dependent documents. amount of formal testing is going to

eliminate the first users uncovering
Testing under RDM emphasizes problems. Testing needs to minimize the
satisfying the user. Its key outcome is number of problems found by users.
problem identification. Results of However, real use is essential to
testing are used to determine what is uncover performance problems, system
actually included in the delivery. That weaknesses, bottlenecks, and strainIis, if testing has shown that some points. On this basis the use of the
segment of the delivery is not system for another application or
operationally viable then its delivery is radically different operation will
postponed until a later dlate or until the constitute a new environment and will
next delivery. Therefore, all deliveries undoubtedly result in a flux of
are made on time, albeit they may not previously unidentified problems.
provide the full functionality as
originally planned. Ads Considerations___
A major testing principle is that to Experience with Ada based projects
continue to test a system within a single using RDM has shown that 45% of the
environment using a fixed set of implementation time in each
procedures eventually produces incremental delivery is spent on
diminishing returns as fewer and fewer preliminary and detailed design
problems are identified. Exhaustive activities. Coding and unit testing
testing is recognized as impossible to constitutes 25% of the time and
achieve. Once the problem time curve integration and test takes the remainingIbegins to level off the efficacy of testing 30%. This contrasts with the
is increased by changing the focus or the distribution of 20%, 55% and 25%,
environment. This is depicted in Figure respectively, that typically has beenI4. experienced with the conventional

development process.

11th Annual National Conference on Ada Technology 1993 116

essential configuration management
The greater time for design has been function.
attributed to the additional effort
required to define all data types and Several features of the Ada language have
develop package specifications. Ada, been exploited in conjunction with RDM.
being a strongly typed language, Taking advantage of the inherent
requires more time to define and readability of Ada code, emphasis has
negotiate all required data structures been placed on developing Ada package
and type definitions. Less time is specifications containing actual Ada code,
required for coding under Ada and RDM rather than pseudo-code. This avoids
because most sub-program interfaces the step of translating the pseudo-code
are negotiated and agreed upon during into actual Ada code. Also,
the design phase. This carries over to interdependencies of the compilation
testing where very little test time is units are rigorously defined. Thus, any
spent dealing with data type errors and undesirable dependencies or
sub-program interface mismatches. architectural problems can be identified
The rigid specification of software and corrected in the desigrn phase rather
program elements (i.e. procedure than later during coding or integration.
argument lists, data types and external Ada provides extensive error checking
package references) minimizes during compilation. This avoids having
problems with their usage by the to find many errors during unit testing
various members of a software on the target system. Finally, extensive
development staff. use of modularity and common libraries

permits significant code re-use from
An Ada development environment has delivery to delivery. This provides the
proven most beneficial in conjunction ability to extensively rework
with RDM. The Rational Ada applications with a minimum of code
Development System provides a 21 67A change.
document generator, configuration
management system, langurge sensitive
editor and Ada compiler. The
development environment assists the U SE
developer with views of data type
definitions, interdependency Where the tenets fit, RDM has proven to
information, syntactic and semantic be far superior to the conventional
assistance, and incremental compilation developmental methodology. RDM is
support. Code is first generated and flexible and responsive to the exigencies
compiled on the Rational. After of real projects. ROM is essentially a
achieving a successful compile the code design-to-cost process in which users,
is transferred to the target environment sponsors, and developers must reach
for unit testing. This transfer is consensus on priorities and scope for
managed automatically by the Rational. each incremental delivery. The result

should be the best capability available
RDM necessitates managing several for the available funding - financially
configuration baselines. The current efficient and effective.
deployed baseline and the current
development baseline are necessary. RDM's has been shown to be highly
Frequently, an update to the deployed responsive to programmatic and
baseline will be in the works, as well. technical changes. Even the obsolescence
Maintaining previous operational of system elements during the
incremental delivery baselines development life cycle can be
constitutes good practice. The Rational accommodated with replacements during
provides good automated support to the the succession of deliveries. RDM is

117 11th Annual National Conference on Ada Technology 1993

responsive to the user through its the implementation of several software
involvement of the user throughout the intensive projects employing
development cycle. The overt attention conventional, prototyping and rap-d
on requirements feedback based on development methodologies. He has been
operational use assures user a contributor to the evolution and
satisfaction, articulation of RDM at the Jet

Propulsion Laboratory.
RDM and Ada have proven to be
compatible for the development of William H. Spuck III
software intensive systems. Ada's Manager, Commercial & Civil Programs
modem software engineering features Jet Propulsion Laboratory
facilitate the short implementation 4800 Oak Grove Drive
period of the incremental deliveries Pasadena, California 91109-8099
essential to RDM. Use of an Ada
developmen, environment has Dr. Spuck has in e;ce.,s of 30 years
contributed to the successful experience in systems engineering and
employment of RDM. program management. All of thesystems developed using RDM at JPL
JPL has used RDM on seven software have been under Dr. Spuck as the
intensive system development projects Program Manager. He has provided
to make 30 successful incremental direction and articulation to the
deliveries. These projects include development of the rapid development
command centers for the USAF Military methodology.
Airlift Commp.d. US Transportation
Command, US European Command and US
Army Hear.quarters. RDM his also been
used tu develop war game simulations
for the US Army.

So far, JP. has been the sole
practitioner of RDM. It remains to be
seen how RDM can be used within the
government's competitive acquisition
guidelines. A task work order contract
may be a potential viable contractual
candidate. Still, it would appear that

changes in Military Standards are
necessary to recognize development
methods such a RDM. These include the
areas of reviews, documentation and
testing.

Lynn G. Gref
Manager, Defense Program
Jet Propulsion Laboratory
Mail Stop 79-6
4800 Oak Grove Drive
Pasadena, California 91109-8099

Dr. Gref has in excess of 25 years
experience in the systems engineering
and development of systems for the
Department of Defense and other
government agencies. He has managed

11th Annual National Conference on Ada Technology 1993 118

wJ 1.00
-J

b 0.75

0 0.50

S0.25I

0
ZI I ! I I

1 2 ,3 4 5 6

TIME AFTER PROJECT START - YEARS

Figure 1 - Normalized Budget History of a Project I

PHASE TIME I
1. PROJECT DEFINITION * I

PRELIMINARY DELIVERY 1 r2 7
OP & SUSTAIN FZ8-I

PRE•LIMINARY DELIVERY 2 EEI
OP & SUSTAIN

DELIVERY I OF L I
OP & SUSTAIN

DELIVERY 2 OF r I
OP & SUSTAIN

DELIVERY 3 OF. 2-
OP & SUSTAIN

Figure 2 - Generic Project Life Cycle Using Rapid Development Methodology i

I
119 11th Annual National Conference on Ada Technology 1993 I

DOCUMENT CATEGORIES EARLY DELIV MID DELIV LATE DELIV

REQUIREMENTS SPECIFICATION FUNCTIONAL V'CURITY & -ILITIES

REQUIREMENTS PERFORMANCE
DESIGN DOCUMENTS REVIEW MTLS & DETAIL DESIGN DETAIL

PKG SPECS DESIGN
INTERFACE CONTROL DOCUMENTS FUNCTIONAL PERFORMANCE -ILITIES

REQUIREMENTS
AS BUILT SPECIFICATIONS DRAWINGS DRAWINGS DRAWINGS

& LISTINGS & LISTINGS & LISTINGS
USER MANUALS BASIC ADVANCED EXCEPTION

FUNCTIONS FEATURES HANDLING
TEST DOCUMENTS PLANS & PROCEDURES ACCEPT-

OPERATIONS & FUNCTIONS ANCE
LOGISTICS DOCUMENTS INITIAL PLANS PLANS MANUALS

Figure 3 - Progression of Documentation Formality

PROBLEM
DISCOVERY

' SHIP TO J-

USER SITE SECURITY TESTING

" INTEERATIONATESTIN
OPERATIONAL TESTING

* 7REQUIREMENTS TESTING

/I INTEGRATION TESTING

TIME

Figure 4 - The Effect of Testing in Multiple Environments

11th Annual National Conference on Ada Technology 1993 120

-'

I
I

A FARMER'S GUIDE TO OOA:
HARVESTING REQUIREMENTS I

Jeffery D. Boyken I
Coleman Research Corporation, Huntsville, Alabama

Brian K. Mitchell I
Coleman Research Corporation, Huntsville, Alabama

Michael J. O'Connor
Coleman Research Corporation, Huntsville, Alabama I

large sets of requirements to the design
Sengineer.

Traditionally there has been a Many assumptions are made as
disconnect between software requirements requirments are defined. In general, these
and software design in large defense assumptions are poorly documented. I
systems. The problem begins with the There are of course other causes for
major product of the requirements phase, breakage between the :equirements phase
the Software Requirements Specification and the design phase of a large software I
(SRS). Typically this document is intended development project. This problem has
for management and the customer not the been recognized by the Software
design engineer. This paper describes a Engineering Institute (SEI) in their I
process to bridge the gap between the Contractr' Maturity Model (CMM) [I-UM87].
requirements phase and the design phase. The requirements harvest process
This process is called a requirements was defined to resolve the requirements I
harvest. The requirements harvest is a hand-over problem. The term
formal process for handing over 'requirements h3rvest' is used because the
requirements form the requirments process of performing requirements I
engineers to the design engineers. analysis is like planting a crop and tending

it. While you may have grown a bountiful
Intrduction crop (complete requirements), if you do not

Traditionally there has' been a effectively harvest the crop it will rot in the
disconnect between software requirements field. Frequently a detailed requirements
and software design for large defense crop is produced, but the design engineers
system using DoD-STD-2167A. There are fail to utilize the yield. Instead, they hurry
several causes for this problem. The to the grocery store and pickup what they
problem begins with the major product of can find leaving the requirements to ruin.
the requirements phase, the Software The requirements harvest concept
Requirements Specification (SRS). This will work with most requirements analysis
document is intended for management and and design methods. However, the
the customer not the design engineer. As process works particularly wail with an
more complex systems are build, it object oriented approach. The authors
becomes increasingly difficult to hand over used the Coad-Yourdop method for object

I
121 11th Annual National Conference on Ada Technology 1993 I

d ..

oriented analysis (OOA) [COA91] and a requirements that have minimal errors. As
modified Buhr and Booch method for a result the detail of the specifications will
object oriented design (OOD) [B0091]. increase. Therefore, in solving the first
The system was implemented in Ada which problem (excessive requirements) the
does not support full object oriented second problem (passing requirements on
programming (OOP). This paper describes to the design engineers) is magnified.
the harvest process in the context of the If a good specifkcation is developed
aforementioned methods. for a large complex system, some errors

First, this paper defines the will still exist after the software
requirements hand-over problem as it requirements review. If the design
relates to large DoD programs. Next the engineers do not have a thorough
harvest process is defined in detail, understanding of the specification they
followed by the authors experience in cannot identify requirements errors as they
applying the process. Finally, the benefits progress into design. As a result, design
are presented. errors will be introduced because of

misinterpreted requirements.
PErcoJ.m Once the software development

Many problems face today's team has developed complete
software development teams. Each time a requirements, more kroblems are
software development team solves one set encountered. In a waterfall approach,
of problems, another set is created. The software requirements are developed early
following paragraphs summarize problems in the program and never updated. After
encountered as the software engineering the initiation of the design phase, little effort
process matures. is expended to keep the requirements up

Two major problems have to date. As a result, the requirements
prevented design engineers from almost never represent what is designed.
designing a system that satisfies the To summarize the problems,
customers expectations. First, improving requirements specification
requirements are traditionally incomplete increases requirements detail and
and incorrect. Second, when the complexity. These detailed and complex
requirements are detailed and complex, as requirements are difficult ito pass on the
they are with large systems, the design engineers such that, they can satisfy
development process does not ensure that them and identify remaining errors. In
the design engineers completely addition, these requirements are not
understand the requirements. The maintained through the design phase.
combination of these two problems can be Recognizing that there is no silver bullet for
devastating. When a large number of software engineering, the requirements
errors exists in a large software harvest process resolves several of these
requirements specification, it is nearly significant problems.
impossible to utilize it. Because of these
problems, design engineers are forced to Process
develop their own requirements. The The requirements harvest process is
result is a design that does not satisfy a formal three step process. As a formal
anyone's expectations, except possibly the process the harvast should be documented
design engineers, by forms (similar to walk-through forms).

A well defined software These forms include checklists that aid the
requirements analysis process assists the reviewers in re'iewing the pertinent data.
requirements engineer in defining The steps of the harvest are very similar to

11th Annual National Conference on Ada Technclogy 1993 122

structured walk troughs done in the coding requirements that the design engineer is
phase. Weber's Key Practices of the responsible for satisfying.
Capability Maturity Model describes many The basic premise of the initial
of the processes that need to be performed harvest review is for the requirements
in software development [WEB91] of which engineer to explain the' requirements to the I
the requirements harvost is just one. design engineer. He will have to resolve

any anomalies (ambiguities, errors, and
Step I inconsistencies) that exist. Each anomaly I

The software specification review is identified through the initial harvest.
(SSR) initiates hand-off of the software Additional specification may be required to
requirements from requirements engineers permanently resolve the anonolies. The
to design engineers. At the SSR the requirements engineer leads the initial
design engineers get a thorough overview harvest. In the harvest, the requirements
of all the requirements for each CSCI object is discussed in detail as well as its
(Computer Software Configuration Item). relationships to other requirements objects.
The SSR provides a general overview of The initial harvest includes a detailed walk-
the requirements and is not intended to through of the following specifications:
discuss each requirement in detail. For a
large system, a general requirements oattributes [COA91]
overview (as called-out by MIL-STD- - for each attribute: description,
1521 B) requires several days to complete. purpose, accuracy, range,

At the completion of the SSR a precision, traceability
requirements harvest is initiated to ensure - class unique, object unique,
that the design engineers are intimately generalizations, and I
knowledgeable of the requirements they specializations
are designing toward. The requirements • services [COA91]
harvest is initiated by the lead design - for each service: description, I
engineer. The lead design engineer purpose, inputs, outputs, timing,
assigns the requirements objects, from the traceability
object-oriented requirements model, to - class unique, object unique, i
each of the design engineers. generalizations, and
Requirements are harvested on an object- specializations
by-object basis. After assigning objects, - implied services (create, delete,
the lead requirements engineer schedules get, set)
a series of requirements reviews, or * relationships to other objects
harvests, with the design engineers. Each - for each instance connection I
harvest is supported by: [COA911: attributes required,

1) the lead requirements engineer, purpose for the requirement
2) the requirements engineer - for each message connection

responsible for specification of the [COA91]: services supplied,
requirements object, services requested

3) the lead design engineer, for each part and whole
4) the design engineer responsible for rmlationship[COA91]: relationships

designing-to the requirements to other objects
object.

These harvests allow the requirements During the intial harvest, the
engineers to rev;ew in detail the requirements engineer is responsible for

completing software change requests

123 11th Annual National Conference on Ada Technology 1993 I ',
TA.f

(SCRs) for all requirements errors CDR is held following the closure of all
identified in the review. The initial harvest SCRs related to the detail design level
ensures all requirements have been harvest.
reviewed in detail for design
considerations. The lead requirements Epre~
engineer reviews all the SCRs generated The authors have used the
and corrects all approved SCRs. When all requirements harvest on a large distributed
the SCRs are closed, a new object real-time defense system. After the SRR,
oriented requirements model is released. the lead design engineer created a design
After the new model is released, the lead architecture based on the requirements
requirements engineer schedules a model. Individual design engineers were
second series of reviews to discuss then assigned to each requirements object.
changes. The harvest process was initiated following

the assignments. The harvest was the first
Step 2 activity of the preliminary design process.

Once the design engineers have The harvest requires a form to
completed their preliminary design, Ada document and guide the procssses. The
Buhr diagram specifications and PDL inclusion of this form is the result of the first
package specifications, the design use of the process. When the harvest was
engineer walks the requirements engineer first conducted only informal notes where
through the design specifications. This keep by the lead requirements engineer
second harvest identifies additional errors and lead design engineer. The informal
in the requirements and ensures that the notes did not provide adequate visibility
requirements are satisfied by the design. into the process.
Again, the requirements engineer is This project marked the first time the
responsible for completing all SCRs software development team performed
against the requirements. Once the SCRs object oriented requirements analysis.
are closed the requirements engineer While all of the development team received
discusses the changes with the design OOA training, only the requirements
engineers. The preliminary design review engineers were experts in the method and
(PDR) is held following the closure of all notation. The requirements harvest
SCRs related to the preliminary design enabled the requirements engineers to
level harvest. explain the OQA notation in detail with the

design engineers. Thus the harvest eased
Step 3 the paradigm shift.

The requirements harvest process is Due to program constraints, the
compiated prior to the critical design requirements analysis process was not
review (CDR). When a design engineer allocated adequate resources.
has completed his Buhr diagram bodies Additionally, systems engineering did not
and Ada PDL bodies, he meets with the produce a completle set of systems
requirements engineer. The design requirements in time to "seed" the software
engineer walks the requirements engineer requirements process. As a result, the
through the design specification to identify software requirements were incomplete.
any requirements errors and to ensure that These problems were identified before the
the requirements are satisfied. Again, the requirements harvest. However, the
requirements engineer is responsible for harvest provided met~ric data, SCRs, to
completing all SCRs and coordinating their make this problem more evident to
resolution with the design engineer. The management.

11th Annual National Conierence on Ada Technology 1993 124

I
Management supported the harvest The requiremerl ts harvest process

process, but did not commit adequate has been defined to manage these U
resources. The requirements model requirements issues. The requirement3
contained approximately 100 objects. The harvest is successful because it formally
design team consisted of 7 engineers ensures: I
including the design lead. Management 1) requirements are understood by the
expected the harvest to be completed in design engineers before preliminary
two to three days. Initial estimates by the design begins, i
software engineers indicated thst it would 2) requirements include the design
require 10 days. The harvest actually took engineers perspective,
3 weeks to complete. with the average 3) requirements are incrementally I
object requiring about one hour of verified through the design process.
discussion. For the farmer of the future to be

Over 100 SCRs were generated successful he must improve his processes.
during the harvest. This number was much He must utilize new technologie3 to
larger than expected. The large number of produce larger crops with less resources
SCRs was attributed to several factors. and with increased yields. An efficient

1. Incomplete system requirements requirements harvest is essential to A
2. Inadequate resources to develop realizing increased yields.

the requirements
3. Limited experience with OOA References

We anticipate that a program with better [BOO91] Booch, Grady, Object Oriented
system requirements and more resources Design With Applications, The
spent cn analysis would not generate as Benjamin/Cummings Publishing
many SCRs. On this particular program, Company, Inc., Redwcnd City, California,
the errors were found before the design 1991.
phase. This significantly reduced the cost [COA91] Coad, Peter and Edward
of resolving the anomalies. Without the Yourdon, Object-Oriented Analysis,
htvest, most of these errors would not Second Edition, Yourdon Press,
have been found until later phases of Englewood Cliffs, New Jersey, 1991. I
development, thus resulting in increased [HUM87] Humphrey, Watts S., W. L.
development cost and schedule overruns. Sweet, A Method for Assessing the

Software Engineering Capability of I
Conclusi.on Contractors, Software Engineering

Many DoD systems being Institute, Pittsburgh, Pennsylvania, 1987.
developed today are very large and [WEB91] Weber, Charles V., Mark C.
complex. For development methodologies Paulk, Cynthia J. Wise, James V. Withey,
to be successful on these programs, they Key Practices of the Capability Maturity
must produce detailed requirements Model, Software Engineering Institute,
specifications. These detailed Pittsburgh, Pennsylvania, 1991.
requirements specifications must be
managed carefully to ensure that: ig e

1) design engineers understand the JEFFERY D. BOYKEN is currently
requirements specification, employed as a Software Engineer for

2) the design process identifies Coleman Research Corporation in
requirements errors, Huntsville, Alabama. He holds a [

3) the requirements and design remain Bachelors of Science in Engineering
consistent. Physics from Murray State University. He

125 11th Annual National Conference on Ada Technology i993 I
• ,, . . . ,

specializ3,s in O'bject Oriented software
requirements analysis for large distributed
real-time systirns. Mr. Boyken dfives a
1987 Buick Grand National.

BRIAN K. M!TCHELL is currently employed
as a Software Engineer for Coleman
Resetrch Corporation in Huntsville,
Alabama. He holds a Bachelors of
Science in Computer Science from Murray
State Univerzity and a Masters of Science
in Computer Science from The University
of Alabama in Huntsville. He specializes in
system and software requirements analysis
for large distributed real-time systems. Mr.
Mitchbll drives a 19i6 Ford Thunderbird.

MICHAEL J. O'Connor ig currently
employed as a Software Engineer for
Coleman Research Corporation in
Huntsville, Alabama. He holds a
Bachelors of Computer Engineering from
Auburn University and a Masters of
Science in Computer Science from The
University of Alabama in Huntsville. He ",
specializes in the development of large
distributed real-time systems in Ada for
defense applications. Mr. O'Connor drives
a 1975 Oidmobile Delta 88 Royal
convertible.

11th Annual National Confereuce on Ada Technology 1093 126

! .7 ': ,,.. • :: . . . • ,,•, . ' . . -- S\., _
--- " - " :. • , " " " -' "' - -

Ada PERFORMANCE ISSUES
IN REAL-TIME TRANSPUTER ENVIRONMENTS

Richard M. Plishka
Comp'ting Sciences Department

University of Scranton
Scranton, PA 38510

717-941-6111
email: plishka@jaguar.uofs.cdu

This article realaqtes lb expx tiercrL, of a project attributed to the fact that it is a high level language
unJertaken at the Cherii.-al Rese-rch, Development and deesign~ed to exprems parallel algorithms and their
Engineerin, Center or' the U.S. Army. Thm objcl-tivc of 'implementation on a network of processing components.
the project was to d.-termine the feasibility of a 'real - In addition, thc Transputer may be considered an
time Ads implementation on a transputer-based 1, OCCAM machine; CC.-AM provides the efficiency
embedded system. Benchmarks were perfc=04ne in Ada equivalent to that of piogramming a conventional
and OCCAM on tIle W0'86 and T9~00 plo'fc.'ms This computer at the assembly language level frWNOS 88).
report contains timing compaiisoru of the Wlit tone Howevei7, given the Congressional Ada Mandate (Public
arnd PIWG benchmarks on these platbrorrns. ILaw 101-511 - Sec. 8092, and Public Law 102-172,

Sec. 807?), Ada has been designated the systeris
LNTRDIJCIQNdevolopment language of choice for Depe'rtrnien of

Defense software projrcts. The objective of this projcct
The Detection Directorate of the Chemn cal wats to evaluate ttbe Alsys_037 Ada compiler for the

Research, Development and Engincering Center Transputer, currently the only commercially evailable
(CRDEC) is develop-ng an embedded system w ; ich Ada compiler for the Transputer, in o;der to determine
utilizes the INMOS T800 Transputet. Although1 there the feasibility of implementing the required software in
aru several programming languages available foý Ada.
systeras developroert on the Trani,..ztc~r, one of Jhe most
widely used is OCCAM. OCCAN41s popularity ýan be The general approach that was taken for this

project was to run a series of software benchmark tests
conforming to fisuru)1.

U0izd - DOS 5.0 TRANSPUTER

BENCHMARK Alsjvs Ada MeridlAn Ada Alsys Ada Occans

Wh.:tstof. x X X x

PIWO x x x

1-lurtstone X X X- - L

figare I - Test Plan

127 11th Annual National Conference on Ada Technology 1993

if ~The Whetstone ber~chirark program [Curnow Host system - G3atew~ay 2000: 80'486DX/33MHz,
76] was developed to compare processing Power for EISA, 8MIEI RAM

S scientific applications. The program goes beyond Transputer - CSA Transputer board for PC:
measuring pure floating point performance (flops') by T800/20MHz., 4MB RAM
including features found in 'typical' scientific
epplications such as: conditional jumps, array indcxing. O~nce the DOS executables were generated,
integer arithmectic, ptocedure calls, and evaluation of timings viere measured on the 386/20M~iz, 386/33MHz,I elementary funictions. The PIWO test suite [Pollack 90, and 486/33M~z systcms. The 386 systems were
Roy 90] contains a series of experiments that assist in eq'iipped with 80387 math cop-3cessors.
the evaluation of processor performance, clockI resolution and compilation efficiency. Hailstone The systems software used to support the
(Weiderman 89] is at bencbmarking tool for evaluating project cons~ited of:
hard real-time Performance.DO5.

The initial plan was to test these software Alsys Ada - version 5.1 -32 bit DOS compiler
benchmark systcms across the Intel 80x86 and INMOS Alsys Ada 037 - version 5.4.2 - Transputer compiler
T800 platforms using the Alsys Ada compiler fo-, 32-bit Meridian Ada - version 4.1.1 - 32 bit DOS compiler

S DOS, the Aisvs Ads compiler for the Transputer, and 11NMOS O4.cam Toolset - version D7205
the Meridian Ada compiler for 32-bit DOS. The
quantitative results from these tests would then tt used Early in the project, the Meridian compiler was
as the basis for conclusions and recommendations. abandon~d due to the volume of compile-time and run-

tinie errors encotuitr.red with code which was
JEHIA 1SUSO- successfully tested' in the Alsys environment. Time did

not permit debuggin~g and rewriting a' large volume of

HARDYLARF/S0FT WARE code. Therefore, the revised test plan matrix conforms
to figure 2.

The hardware system which was used toI develop and test the benchmarks consisted of.

I _________ _________Alsys Ada - 32 bit DOS Trursaputer

BENCHIMARK 83O3862OMH, 03O8t6133MHx 90411/33M i Alays Ada Occans

Whetstone X X X X X

PIWO X X X X

Hartstone X X X X

g figure 2 - Test Plan - revised

ACIITE categories of contemporary scientific calculations. In
particular, it uses smml! arrays, no multi-dimensional

WHETSTONE The Whetstone benchmark has arrays are employed, it is dependent on the speed ofI been considered somewhat a standard berclchmark for a floating point operefions, and the number of elementary
number of years. Unlike the Drystone benchmark, function evaluations is probably atypical of currentO Whetstone is intexided to simulate 'typical' scientific programming models [iNMO0S 9 1, !)25 9). Despite these
applications through its utilization of a variety of observations, it still provides a legitimate baseline for
routines. It does, however, fall short in several the evaluation raquired in this project. Whetstone was

II1th Annual National Conference on Ada Tcchnolagy !993 12E

successfully coded and tested in both Ada and Occam,
and run on the 80x86 and T800 platforms. PROCEDIRS

EIMWQ The Performance Issues Working All benchmark development, testing and
Group of the ACM has made available a series of Ada implementation was performed on the hardware and
benchmarks which can be used in the evaluation of Ada software previously noted. Onc the hexectables were
compilers across a range of hardware platforms. The generated, testing was conducted according to figure 2.
test suite assists in the evaluation of execution time and All compilations and bind~ng/linkin8 optimization
compilation time. It was determined for this project options are tontairned in APPENDIX A.

that the compilation time tests were of little value at
this stage in the project; therefore, emphasis was placed
on the evaluation of execution timings. In particular, RESULTS
there are four test areas that made up the critical area of
performance testing. They are: Test results are contained in figures 3 - 5. A

1. Clook Resolution ,ýAOOO90) Thiis test key point worth noting is that the Ada/Transputer

illustrates CPU clock resolution available to environment is, in effect, a runtime environment. That

Ada. is, the execution of the Ada generated code is

2. DELAY Resolution (Y000001) Measures the supervised by the ISERVER. This runtime environment

resolution of the DELAY feature of Ada. does not permit the Ada code access to the high priority
one microsecond clock resolution available on the T800.

3. Procedure Call Overhead (P tieOn5/6d7) The OCCAM environment, however, does permit
Measures procedure call overhea.d time in Ada. OCA coeneirscndaes.Trfre

4. Hnney Tets AO0094AK)Seiesof tstsOCCAM code one microsecond access. Therefore;
4. Hennesy Tests m A000094A-K)Sceries of tests perhaps one of the most interesting charts is the

areas including: recursion, integer and real WHETSTONE comparison. The other charts, however,
matrea mutinluig:rcution,i and rerting tal do provide valuable information on the comparison of
matrix multiplication, and sorting (data Ada executables on 20MHz and 33MHz processors
movement), utilizing different architectures.

These tests were successfully performed in Ada
on both the 80x86 and T800 p!atforms. CONCLUSIONS

HARTSTONE The Hartstone benchmark is a The CBMS under development by CRDEC
set of timing requirements for testing a system's ability requires one microprocessor feature that is not
to handle hard real-time applications [Weiderman 89].
The complete Hartstone benchmark consists of five supported by the 80x86 line of processors; that is, the

categories of testi: PH Series, PN Series, AH Series, SH requirement to have <3 microsecond resolution. The

Series, and SA Series [Weiderman 89, p5]. The only dilemma highlighted by this study concludes that the

test successfully implemented in Ada to date is the PH current Ada environments available fall short of

Series. This test provides feedback for a set of tasks providing this feature on the T8, even though it can

which are periodic and harmonic. be supported via OCCAM.

The PH Series was successfully tested on the A variety of options exist in the pursuit of a

T800 platform in Ada; however, the 8Ox86 DOS tests sclution to this problem. Perhaps the most interesting

failed to provide reliable results. Best estimation is that would be that of developing the CBMS software
as the period in milliseconds began to pproach the support system using both Ada and OCCAM. Thisas thepereuiod invilalseondsrougan to AdaA)tS option may satisfy both the timing constraints of theclock resolution available through the ACBMS project as well as the Congressional Ada
environment, the system would 'hang"; apparently
attributable to DOS. Therefore, the quality of Mandate. One item missing in permitting this

comparable 80x86fT800 results was compromised. recommendation is evidence of the real-time timingcomprabe 8x86tg00resltswas ompomiedrequirements of OCCAM. Comparative data, such as
Because of deadline constraints, it was determined that
the Hnrtstone benchmarks could not be successfully that provided in this report, illustrating OCCAM'sthe artton benhmaks ouldnotbe 11COS~fllystatistics in similar PIWO and Hartstone
implemented and therefore omitted from this report.

129 11th Annual National Conference on Ada Technology 1993

. .- - -. . ,

LPN7

//

implementations would be helpful. Such data could [INMOS 91] INMOS Limited
provide valuable insight as to whether or not OCCA-M OCCAM4 2 Toolset
may be a viable alternative or supplement to the Ada SOS-Thomson Microelectronics Inc.,
development environment. Colorado Springs, 1991

ACKNOWL.ME j [LRM 83] United States Department of Defense
Reference Manualfor the Ada

This work was supported by the Chemical Programming Language
Research, Development and Engineering Center under American National standards Institute,
the auspices of i'e U.S. Army Research Office New York, 1983
Scientific Services Program adminis~ered by Batte'*ie
(Delivery Order 251, Contract No. DAAL03-91 -C- [Pollack 90] Pollack, R.H., and Campbell, D.J.
0034). Clock Resolution and the PIWG

Benchmaik SuiteI.FERENCES Ada Letters - Specfal Edition on Ada
Performance Issues X(3), 91-97, 1990

[Borger 89) Borger, M., Klein, M., Veltre, R. [Roy 90] Roy,D, and Gupta, L.
Real-Time Software Engineering in P A Methodology
Ada: Observations and Guidelines Ada Letters - Special Edition on Ada
Technical Report CMU/SEI-89-TR-22, Poorfo.rmanre Issues X(3), 217-229,
DTIC: ADA219020, !990
Software Eugineering Institute,
Carnegie Mellon University, [Weiderman 89] Weiderman, Nelson
Pittsburgh, PA 15213, September,
1989 Hartstone: Synthetic Benchmark

Requirements for Hard Real-Time

[Curnow 761 Curnow, H.J., and Wichmann, B.A, Applications

A Synthetic Benchmark Technical Report CMU/SEI-89-TR-23,
DTIC: ADA219326,

Computer Journal 19 (1), 1 Software Engineering Institute,
January, 1976 Carnegie Mellon University,

[Donohoe 901 Donohoe, P., Shapiro, R., Weiderman, Pittsburgh, PA 15213, June, 1989

N.
Hartetone Benchmark User's Guide, Richard M. Pllshka is an Associate Professor in theSVersion 1.0. ...

Technical Report CM./SEI-90-UG-l, Computing Sciences Department. His research interests
ThSoftware Engineering Institute, include Ada development environments and real-time

Carnegie M University,

Pittsburgh, PA 15213, March, 1990

S [INMOS 88] INMOS Limited
OCCAM 2 Reference Manual
Prentice Hall, New York, 1988

[INMOS 891 INMOS Limited
Transputer Applications Notebook -
"Systems and Performance
Redwood Press Ltd., Melksham, 1989

llth Annual National Conference on Ada Technology 1993 130

'-. ." T

CLOCK RESOLUTION (ACOOSO9)
Alsys Ada

System Time (seconds)
Tnww*A~w (T800-20/20iAHz) 0.00006I035 5OM0
30386r"20~~ (DOSI O.C000544221 87500
B036/3MHz (DOS) 0.000854492187500
80486r33MHz (DOS) 0.000854492187500

WHETSTONES

TARGET 10h"S RunThu. File Size File Type
(in bytes)

Ads - 386d20MHZ (A0000%3) '1010 12694 .EXE
Ada - T800/2OMHz (AO00093) 1541 558M .BTL
OCCAM - T800(20kiHz 3655 9646 .BTL
Adsa- 38S/3MHz jAM0c9) 2075 128944 .EXE
Ads - 486d33MHz (ACO009) 5489 126944 .EXE

~ Ilo Whetsone Itructiorb Per Second

KWIPS

W 6000/

I- Z 4000
0 3000
ow 2000
00 10001V~~

Ada- Ada- OCCAM - Ada - Ada-
38W/2MHz T800/20MHz T800/20MHz 388/33MHz 486133MHz
(A000093) (A000093) (A000093) (A000093)

RunTime File Size

140000

cc 100000 .~> ___

S80000
w 40000

20000
0

Ada- Ada- OCCAM - Ada- Ada-
388/20MHz T$CO/2OMHz T800I2OMHz 388/33MHz 488/3MHz
(A000093) (A000093) (A000093) (A000093)

figure 3 - Clock Resolution/Whetstone Results

131 11th Anauil National Conference on Ada Technology 1993

00 0 id. 6.

IM

*4 -- ;- -' VC

V- -

-C 6000V

11111111~,aoV
6=Voy

eCwoy

W=

11th Annual National Conference on Ada Technology 1993 132

DELAY RE3OLUTION (Y000001)

Commanded Transputer (T800-20/20MHz) 386/20MHz (DOS) :86/33MHz (DOS) 486/33MHz (DOS)
0.00097 0,00115 0.00171 0.00171 0.00171
0.00195 W,.M213 000256 0.00256 0.00256
0.00390 0.00415 0.00427 0.00427 0.00427
0.00781 0.008C65 0.00854 0.0065A 0.00'4
0.01562 0.01599 0.01630 0.01630 0.01630
0.03125 0.03161 0.03174 0.03174 0.03174

0.06250 0.062u0 0.06262 0.06262 0.06262
0.12500 0.12530 0,12525 0.12524 0.12524
0.25000 0.25024 0.5055 0.25055 0.25055
S0.50300 0.50036 0.50031 0.50031 0.50031
1.00000 1.00030 1.00M7
2.0M00 2.00024 2.00049

PROCEDURE CALL OVERHEAD
Aisys Ada - time in microseconds

Test Transputer (T800-20/20MHz) 3e6/20MHz (DOS) 386/33MHz (DOS) 486/33M1-z (DOS)
P003005 5.27 4.04 1.63 0.84
P000006 4.66 4.16 1.72 0.80I
P000007 5.03 4.51 1.79 0.96I

I-

Procedure Call Overhead

z5

CD3 1 "
024

21

P000005 P000006 P000007

E]Transputer M]386i20MHz 0]386/33MHz 2]486/33MHz
("800. (DOS) (DOS) (DOS)I
20/20MHz)/.

figure 5 - Delay Resolution/Procedure Call Overhead

I
133 11t~h Annual National Conference on Ada Technology 1993

APPENDIX A
OPTIMIZATION

All code was compiled and linked taking advantage of optimization feaures provided by each specific
development environment.

Ads - DOS

Compiler - Alsyc Ada for 32-bit DOS - version 5.1
Compile options .- IMPROVE-(CALLS = INLINED

REDUCTION = EXTENSIVE
EXPRESSIONS - EXTENSIVE)

CALLS -INLINED: Call will be inlined for subprograms that aren't directly or indirectly
recursive in response !o INLINE pragina.

REDUCTION = EXTENSIVE: Performs analysis of intermidiate program representation to eliminate
numerous run-time ehecki and removal of dead code.

EXPRESSIONS - EXTENSIVE: Performs common subexpression elimination and additional register
optimization.

Bind options - TIMER - FAST
TIMER FAST: High resolution timer used for the implementation of the DELAY

statement.

Ads - Transnu.•lr
Compiler - Alsys Ada for the Transputer - version 5.4.2
Compile options - IMPROVE-(INLIRE - PRAGMA

REDUCTION - EXTENSIVE
EXPRESSIONS - EXTENSIVE)

INLINE - PRAGMA: Same as CALLS - INLINED above.
REDUCTION - EXTENSIVE: Same as REDUCTION - EXTENSIVE above.
EXPRESSIONS - EXTENSIVE: Same as EXPRESSIONS - EXTENSIVE above.

Bind options - FAST MAIN YES, FASTTASK - YES
FASTMAIN - YES: Attempt to allocate the primary stack of the main program iu a low-

addressed area which could be mapped to the internal on-cbip
memory of the Transputer.

FASTTASK - YES: Attempt to allocate the primary stack of the task in a low-addressed
arce which could be mapped lo the internal on-chip memory of the
Transputur.

OCCAM
Compiler - INMOS OCCAM Toolset - vercion D7205
Compiler options - /a A8 /h

/a: Prevents compiler from performing alias checking, and
prevents usage checking.

/t8: Compile for T800 processor.
1h: Produces code in HALT mode.

Linker options - A8 /h
Ag: Specifies T800 as target processor.
/hn: Generates a linked unit in HALT mode.

Code Collector options: It
A: Creates a bootable file for a single transputer.

Host file server: /se
Ise: Terminates the server it the Trensputer error flag is set.

11th Annual National Conference on Ada Technology 1993 134

I

Defense Software Repository System Panel I
Moderator: Joanne Piper, DISA/CIM I

Panelists: Marree R:ggs, Army
Patti Hicks, Defense Logistics Agency
Rob Rutherford, Air Force, Standard Systems Center
Jim Wheeler, Navy I

I
i
I

I
I
I

I

I
I
I

135 1lth Annual National Conference on Ada Technology 1993 I

Ada In Undorgraduate Computing Education:
Experience & Lessons Learned

Moderator: John Beldler, University of Scranton

Panellsts: Mike Feldman, George Washington University
Nick DeLIllo, Manhattan College
Jim Smith, Leymoye College
John W. McCormick, State University of New York

11th Annual National Conference on Ada Technology 1993 136

I �
\\ �\

Programming In the Large I
Mod;rator: Dr. Donald Mutilkin, FAA I
Panelists:

I,:

I
I.
I.
I
I
I
I,

I
I
I
I
3
I

137 11th Annual National Conference on Ada 7echnology 1993 1

Reuse Interoperability Group (RIG)

Moderators: Jim Moore, IBMP
Dave Dikel, Applied Expertise, Inc.

Panelists: Eric Beser, Westinghouse
Linda Braun, MountainNet
Pam Arya, General Research Corp.
David Dlkel, Applied Expertise

1'

11th Annual Na~tional Conference on Ada Technology 1993 138

I>

TRANSITION TO ADA: A CASE STUDY

Urban LeJeune and Murray Klrch
Stockton State College

Ponona, New Jersey 08240

StUMMAR tic City boardwalk. The school has slightly over
5,000 full time equivalent students and offers -

This paper describes, in case study format, degrees in a variety of liberal arts and
the pedagogical change to Ada from Pascal at professional majors. The Computer and Infor- /

Stockton State College. The transition was mation Sciences (INFO) program is domiciled
started in the Fall 198l8 semester. During that in the Professional Studies Division. Profes-
semester Ada was introduced into the Operating sional Studies also includes Business Studies
Systems and Programming Language Structures and a variety of health related programs. The
courses. The metamorphosis was complete in INFO program supports approximately 125
the Fall 1991 semester with the adoption of Ada majors and has eight full-time and one half-timc
in our Programming and PRoblem Solving I faculty members.
course, which is based on the ACM CSI guide- U
lines. The INFO program offers both BA and BS

degrees. The curriculum is based upon a com-
The experience has proven to be pedagogi- mon core of courses which is required for all I

caly sound and enthusiastically supported by majors. BS candidates chose between four ma-
both faculty and students. A key to the success- jor tracks while BA candidates tailor their pro-
ful transition was the initial introduction of Ada grams to satisfy their individial career goals
at the senior level and subsequently incorpoilit- including a broader liberal arts component
ing the use of the language progressively lower
in the curriculum. The philosophy was based The common core of courses required of all
upon the premise that you do not have to teach INFO majors are:.-
upper level students how to program and, addi-
tionally, upper level students, after being ex- INFO 1206 Statistics I
posed to Ada, would become formal and infor- INFO 2101 Programming and
meal tutors and laboratory assistants. INFO 2102 Programming aid

Problem Solving 11
INFO 2210 Systems Analysis and

GNERaL BACKGRO ND Design
INFO 2222 Fundamentals of

Stockton State College is a moderately sized Information Systems
dMATH 2225 Discrete Mathematics I

hliral arts college located in Pomona, New 3cr- MATH 2215 Calculus I I
sey which is about twenty minutes to the Atlan-

9 1lth Annual National Conference on Ada Teanology 1993

:-_ : , / ! ' , , : - .

• ' ,- /•

The four concentration tracks f.•" BS candi- After an extensive evaluation of many lan-
dates are Computer Science, Information Sys- guages, Ada was selected as the language of
tems, Management Information Systems, and instruction. The support for software engimer-
Computer Education. All four tracks require 51 ing principles plus an exceptionally high level
credits of appiicable concentration and cognate of standardization made Ada the clear choice.
coursework in addition to the common core. Additional factors were the emergence of vali-
BA candidates are required to complet, 35 dated Ada compilers for iBM PC compatible
credits of coursework in computer and cognate platforms and Stockton's close proximity to the
courses above the common core requihemealt. Federal Aviation Agency Technical Center in

Pomona, New Jersey. Stockton has historically
placed many cooperative educatioi; students at

ADA BACKGROUND the Tech Center.

In the early eighties Stockton embraced the
educational concept of emphasizing a single ADA EVOLUTTON
progra-mming language for intr-actional pur-
poses as opposea to a sampling of languages Murray Kirch, the senior faculty member in
that was prevalent at the timt. The larguage of the department, was instrumental in the selec-
choice was Pascal. The only time outer lan.- tion process and the subsequent faculty training.
guages were taught, and continue to be taught, It is axiomatic that there must be a strong and
is wher they have application features not in- dedicated leader if a project of this size is to be
cluded in the primary language. File processing carried to fruition.
using COBOL, numerical methods using FOR-
TRAN, and artificial intelligence using LISP Before implementing Ada in av-v course,
and Prolog are examples. substantial groundwork and preparation is re-

quired. If the progriam is to succeed, there must
As the decade progressed, the Stockton com- be strong faculty preparation. The Stockton

puter science curriculum placed increasingly transitional procez9 commenced with Murray
greater emphasis on emerging software engi- Kirch attending an intensive 4-week faculty
neering concepts. It became painfilly clear that seminar at Tuskegee University. Later Murray
standard Pascal lacked features that would pro- conducted a one week Ada workshop for faculty
vide strong support for major software engincer- members on the Stockton campus. Non-com-
ing principles. Consequently, faculty decided to puter science faculty members were especially
examine other languages to determine one most encouraged to attend the workshop that was
appropriate for the INFO program. supported by the institution.

One of the primary goals in the instructional It was decided to start the Ada transition
language selection process was the capacity of a process by initially emplo:'ng the language in
language to be broadly included in the curricu- upper level courses. This would enable facuity
lum. Wherever possible, within the limits of a to gain experience in using Ada with well-pre-
liberal arts college curricular requirements, the pared students before attempting to introd=e it
Stockton program incorporates the ACM cur- in large, introductory level courses. This Jso
riculum guidelines, produced a cadre of student assistants for lower

11th Annual National Conference on Ada Technology 1993 140

level courses to be twught in subsequent semes- are embedded in our Programming and Problem
ters. Solving II (CS2) course. The Data Structures

course enables students to gain experience with
The transitional goal was established to take a more sophis:icated use of generics and other

place in a three year period. Th"c goal for :he Ada features. The Operating Systems course is
first year was to introduce Ada into Jui- a natural for the introduction of concurrency
ior/Setior level courses. The second year ob- and tasking using problems such as the dining
jective was to incorporate Ada in Sophomore philosophcrs and the readers and writers.,
lever courses. The third year was the year that
completed the procesr with the introduction of Upper level courses featuring Ada features
Ada into Freshman level courses which incluoCd include Programming Language Structures
the CSI and CS2 courses. (PLS) and Software Engineering. In the PLS

course Ada is treated as an object of study and
During the fall sermester of 1988 Ada was additionally is used as an implementation lan-

introduced to the Stockton curriculum with the guage to write a sophisticated project such as an
offering of Operating Systems and Program- interpreter for a Pascal type language. The
ming Language Structures. Ada's tasking ability Software Engineering may be conceptualized as
made it an ideal programming language chbice a capstone course using large team projects en-
in the operating systems course. In the)to- compassing both maintenance and startup pro-
gramming language course, Ada was both an jects. Because of the proximity of the Federal
object of study as well as the implementatioa Aviation Agency Technical Center, and the fact
language for a language translation project. that many students by this time have spend a

semester co-op at the Tech Center, an air traffic
The spring semester of 1989 witnessed the control project is typically implemented. A

incorporation of Ada as the language of choice maintenance project available from the Soft-
for a software engineering course. Stockton also ware Engineering Institute is frequently imple-
co-hosted the S&,venth Annual National Confer- mented as the maintenance component.
ence on Ada Technology in Atlantic City during
the semester. During the fall 1989 semester When Ada was first introduced the only
Ada was introduced into the sophomore level compiler available to students was VAX Ada
course in data structures. running on a DEC VAX cluster consisting of a

VAX 6410 and a VAX 6310. In 1989 two Me-
During the fall of 1990 and the spring of ridian compilers were made available to Stock-

1991 Ada was the language used in the fresh- ton faculty through the Annual Conference on
man level courses, Programmirg and Problem Ada Technology's Academic Outreach program.
Solving IH (CS2) and Programming and Problem By 1990 a Novell network was outfitted with a
Solving I (CS 1). This completed the transition Meridian Ada compiler, providing students and
from Pascal to Ada. faculty with the option of using the PC/MS-

DOS or VAX/VMS based product.
The major Ada concepts introduced in the

course sequence included the introduction of Meridian also made PC based compilers
exception handling, packages, and attributes in available to students at substantially reduced
the Programming and Problem Solving I (CSI) prices. Many Stockton students purchase Ada
course. Generics, adh-znced exception handling, compilefs to be used on their own computer
abstract data types and team oriented projects systems.

14,1 11th Annual National Conference on Ada Technology 1993

S•~~K",

I

concepts starting with their first course. The
OBSERVATIONS use of Ada has facilitated more substantial stu-

dent projects throughout the curriculum begin-
Severad lessons were learned during the ning with the introductory level course. A ma-

process. Faculty development is an ongoing jor side effect has been expanded student em-
I process with members attending frequent con- ployment opportunities.

ferences and training seminars. Additionally,
Stockton facilty have presented seminars and Student reaction to Ada has, in general, beenE papers concerning technical and educational as- enthusiastic. There is some initial reluctance
pects of software engineering with Ada at re- from beginning students who have experience

I gional, national, and international conferences, with Turbo Pascal.

Textbook selection presented an initial Ada is a language that is designed to reduce
problem. The selection was, and is, limited life-cycle costs; this is partially accomplished by
when compared to the plethora of available Pas- attempting to discover software errors as early
cal books. The scarcity is especially noticeable in the life-.ycle process as possible. As a con-E at the introductory and intermediate levels, sequence of the more extensive error checking
However, the quantity and quality of available performed by an Ada compiler, an Ada program
Ada textbooks are dramatically increasing. A written by a beginning student may be more
list of available textbooks appears in Feldman1 . difficult to successfully compile than its Pascal

counterl..rt; however the Ada program is more
As a first programming language Ada does likely to run successfully. However, this adv.n-

present some practical problems. Developmen- tage is lost on some introductory programming
tal environments are not as user-friendly as students. The first programming course typi-
those available with Pascal. This deficiency is cally terminates with a demonstration of Ada's
especially noticeable when compared with the generic features. This characteristic, coupled
exceptionally friendly front-end provided with with Adas exception handling, tends to convert
Turbo Pascal. The increased time required to even the strongest Pascal proponents.I produce an executable program using Ada can
be a source of student frustration. However, most of our students are eager to

learn Ada. They know it is a more modem lan-
initial student programming frustration may guage and one for which there is strong local

be substantially overcome by the judicious use demand by prospective employers. Students
of supplied source code. A supplied package also feel a justifiable sense of accomplishment
can hide many required implementation details as they learn to use Ada in their software pro-
from students until they ate ready to compre- jects.
hend the Ada language complexity.I• A well prepared faculty, coupled with mod-

est institutional support, resulted in a relatively
CONCLUSIONS painless transition to Ada. The "top down" ap-

proach of introducing Ada first in upper level
The transition to Ada at Stockton has pro- courses and latter in the intermediate and intro-

duced far more advantages than difficulties. duct6ry levwl courses worked well. (Feldman1

Students are exposed to software engineering provides several examples of academic institu-
tions where Ada was introduced using a "bottom

/

l 11th Annual National Conference on Ada Technology 1993 142

. • • . . .

u"approach). To paraphrasz the old saw "you
don't have to be a computer scientist to like
Ada, try it you'll like it"

1. Feldman, M. A& experience in the
undergraduate cutriculum. Commun. ACM 35,
I1I (Nov. 1992), 53-67.

About the Authors:

Urban A. Leleune Murray R. Kirch
Division of Professional Studies Division of Professional Studies
Stock-ton State College Stockton. State College
Pomona, New Jersey 08240 Pomona, NJ 08240
email: lejeune(apilotnjizunct email: mrk@vax002.stockton.edu
Phone (609)-652-4477 Phone (609)-652-4353

Dr. Lciune is an associate professor of infor- Dr. Xircn is a professor of computer science and
mation and computor sciences at Stockton State inafhemnatics at Stockton State College. lie re-
College. He holds an Ed.D. in educational ad- ceived his PILD. degree from Lehigh Univer-
ministration from Temple University, a M.S. in sit)'. Prior to joining Stockton he held positions
computer science from Monmouth College and at the Center for Naval Analyses, Lehigh Urn-
a B.S.B.A.L from Thomas Edison State. College. versity, and the Stpate Uni; ersity of New York at
He has twelve years of teaching experience in Buffalo. He has held visiting positions at New
addition to over twenty years of computer and College of the Uiniversity of South Florida,
electronic industry experience. Clarkson University, the Softwarem Engineering

Institute at Carnegie Mellon University, and the
Dr. Le-Jeune's research interests include corn- Indiana U~niversity (Bloomington) Cooperative
puter science education, teleconununications as Program in Malaysia. He has served as a con-
an educational tool, distant education, pro- sultant to major academic, commercial, and
graji.ming langu~ages, programx generators, lan government organizations in North America and
guage translators and the educational use of In- Asia.
ternet. Ada activities have ircluded presenta-
tions at several Ada specific conferences and His professional interests include software en-
publication on Ada and educationally relatted gineering, artificial intelligence, computer sci-

subjcts.ence education, and the mathematics of risk.

143 11th Annual National Conference on Ada Technology 1993

THINKING IN Ada - HOW SOME STUDENTS EXPERIENCE THEIR NEW LANGUAGE

Kevin J. Cogan

Program Executive Office
Standard Army Management Information Systems

Fort felvoir, Virginia 22060

ABSTRACT It has been said that the way we think is thought and expression. Through concrete and
determined by the language which we speak. successively more coMplex pi-oblems, they acquire a
Translation between spoken languages does not always measure of confidcme that they will be able to
have a one-to-one correspondence. Computin muster the problem domain of their future.
languages pose the sae problem of precisely trying
to represent a reat-world problem as a ccajuter This paper drsis on over twelve semesters
algorithm. The Ada progremming Language car bhe of teaching beginning and intermediate Ada courses
presented to students as having a high co'rretation to undergr•duates. Specific course problems and
with the rest-world problem domain. Packages, programs are selected which represent a sample of
enumeration, tasking, and exceptions are likely to be the student. experience in this curriculum. At each
new concepts to the student of Ada, but they can be introluction .f * new Ado toot, the transformation
easily acquired through good representative problem. from word to thought is reinforced through a real
Recognizi•g the reaL-wortd through Ads descriptions or futuristic problem. Banquet halts are comptex
can rescnble a new natural language for students, records of various size tables which ara themselves
Specific course problems and programs which arrays with constraints. Soda machines are man-
encapsulate the learning experience are described, machine interface devices. The post office
Through such experiences they will appreciate the requires a program to weigh and ship packages
power of their new language and enter choir careers automatically. The result of thase exercises is an
with confidence. increased ability to conceptualize the reat-world

in the Ada vernacular. Students are chatlenged to
model a football scoreboard or the instrument panel

INTRODUCTION of their car or stereo. The color code of a
'esistor offers the opportunity to introduce 'POS

Linguists have postulated that how we think Is and 'VAL attributes in a robotics application to
determined by the language which we speak. They also read or paint it.
note that translation between spoken languages does
not always have a one-to-one correlation. A specific By mid-semester one can argue that the way
exampte is the German word G6-uttichkeit (a special the student thinks about a problem has now been
coziness) witho,.,t a single English word to precisely altered by the expressiveness of the Ads languaqe.
represent it. Objects can be stated as a collection of simpte and

composite types. New toots afforded by the
Computing languages pose the same problem. language have elevated the plans onwhich problems

Software engineers have the difficulty of trying to are organited and solved. Student derived term
precisely represent a reat-world abstraction in a projects are the capstone of the course and serve
limited voc~abulary/. Perhops the converse situation as a measure of the breadth and complexity of

is more often the case - that the Limited vocabulary prcbtens that the students themselves feel capable
of a computer language determines the way we think a of solving in their new Language.
problem should be represented.

The Ada programming lan•'uage, with its 62 PROGLEMS AND ALGORITHMIS
reserved words, can be presented to students not as
a limitation of expression but as a gateway to better Just Like translating from one natural
and new ways of representing the abstraction as Language to another, translation between the real-
compared to other ccmiuter Languages. Packageý, world and a computer algorithm is not a direct
enumeration, tasking, and exceptions are likely to be process. A graphic description of this process wa3
new concepts, tools, thought process, and vocabulary, presented by Ledgard and Marcotty1 whereby real-
Ada can be on enabling technology for the world objects and operations in the problem domain
Increasingly chatlenging software environment. are converted by the programner into prograimring

language objects and operations in the solution
The existing applications fmr the space domain. A computer algorithm produces output data

station, Pir traffic control, and large HIS projects which is then interpreted by humars back into real-
are indicators of the future of Ada and the level of world objects. From this model one can infer that
human thought and resl-world to computer language the higher the level of abstraction permitted by
translation needed to solve them. Students ore told the computer language, the easier one can translate
that this is the problem domain for their chosen between the real and computer worlds. Students are
career. They are told that Ada provides a rich tauht thot Ade provldes the tools for high level
gram•nar which allows them to exercise their power of abstractions and that objects can he expressed very

11th Annual National Conference on Ada Technology 1993 14,

directly. For example, a simple program to mix decompose a problem. Practical exercises described
colors is presented. If the abstraction Is to mix later allow the student to gain experience in this
blue and yellow to get green than the statement technique. Toots for "industrial strength"

programs are early in the making.
ResultirngCoter := Blue + Yellow;

Is a permissible statement where "+" Is an overloaded LEARNING TO SPEAK Ada
function for the declared enunerated type Color and
the supporting implementation algorithm for the new The rudiments of expressing oneself in a
function "t" is shown In Fi•ure 1. computer language are not unlike a spoken Language.

At the same time that the notions of top-down
with V , f,_"I design, abstraction, decomposition, and paratlelism
Sayv. cu.~a. gm u,.wo, n.-~,.•,gCAM)1 are introduced, the student must also learn from
cote_,g. 2.€a•;). .. mo•.,~ ~the bottom up the syntax and semoantics of their new

•.9 . £° , , ° . _o, Language as one must Learn the spelling, grammar
and meanings of a spoken Language. It is

no -P as.ir 1- -.) r instructive to observe how a youQ child with many
.Wtr. 1=6":, ideas Is frustrated as it struggles to use new

ease e words In an unfamiliar grwrmr. Classroom

We BLO e,., 8 In experience has shown that 5tLients need and desire
whe YXA" v• ,.t.,a M,•nl to write rest code that comp~tes and executes at
VMS *there. "T1 mix- r x exoo-. the sme time that they are Learning concepts,
.i ... ,, "us sm design techniques, and the salient readability,-lbont ftlbore PUTeIi•n MIT =Pluto-X'•)$caters &I portability, reliability, and maintainability

a -#.pend ceas tenets of Ada. A single viewgraph of the 62

, -- mum reserved words of Ada helps to alleviatu any
e..p earlier preconceived notion that Ada Is a vast and

GE'KON1)1ITcO x•.•- ,) 1 • complex Language. After all, they are told, onlyGLTCOLOR- t 0 1 1! -l(O,~)

, C• , 4, , etsif, rem, and xor are not English words and even
it gMa C/. IC0142 I .. they are self-evident or require only Little

Mvyu , O -PM(cowl 3)1 explanation. All other.reserved words support the"-U(L1V2•(') high level of abstraction that Ada permits, and
X. , through experience, like speaking a language, the

actions or semantics they represent will becomt
second tiature.

Figure 1. Program to mix colors.
An immersion into the syntax is also

The teaching point here Is that Blue and Immediately called for. A quick uaLkthrough of
Yellow are truly values in an enumerated type and can Appendix E In the language reference manual, or the
be as easily computed as one can pour one gallon of equivalent in many textbooks, is necessary.
paint into another. In another language, say Confidence can be built by a simple introduction to
FORTRAN, Blue and Yellow would have to be variable the Backus-Naur Form (BNF) where the meaning of the
names, converted to a nrueric value, computed, looked symbols ::= for denoting a definition, :u for
up in a result table, and Green printed as a assignment, EI for 0 or 1 occurrence, (for
character string. This is far removed from the real- 1 or more occurrences, and j for alternation are
world abstraction, and through this kind of example sufficient to understand and decipher all of Ada's
the student quickly learns to appreciate the power of grammar. Students find it not too challenging
expression permitted by the Ada language. after all to determine how to verify that the

Identifier R202 is permissible but 3CPO is not, or
Students are soon introduced to compcixmd data similarly how 2000_000C is an optional form of

types through records and arrays as a means to 2000000 for readability, but why .03 is not an
describe real-world objects at a high Level of allowed decimal number representation. Practice
abstraction. An early work by Downes and Ootdsack 2

and testi.'ig allow students to soon master
for a hospitai patient monitoring system is a definitions such as for the case statement.
for.idable case study and discussed with the
students. It presents high levels of abstraction and casestatement ::=
considerable depth of decomposition. Records and cas* expression is
arrays composed of other records and arrays permit, (when choice (I choice) ae
for example, the retrieval of the permitted upper sequenceof statements)
blood pressure Limit among other factors for the
patient in bed 13 of the intensive care unit by using Such mastery is necessary to test new Ideas for
the dot-notated expression abstraction and debug incorrect assumptions fcr

challenging problems Later.
IntensiveCare.Unit (13).Safe Rages.Upper.Systol ic

AN Ada SAMPLER
Through this and other such examples, students easily
grasp the concept of complex data types where the Familiarity with the problem domain eases
components of records and arrays can be constructed the transition to writing programs in Ada.
from other complex types until an atomic level is Consequently, example problems are best understood
reached. This permits the student to visualize at a when they are part of the real-world experience of
high level of abstraction and develop skills to the student. When fntroducinr the fact that

145 11th Annual National Conference on Ada Technology 1993

enfumersited types can. have values which are overloaded
(a value declared in more than one type) this at
firs~t may sewm foreig.i or ambiguous. Since most "Sosstudents hove taken a general course In chenistry and ST;,~,~
are familiar with the periodic table of oelemfnts, 0ut.4u.,
overloading ths value No for the element neon can be ~*,
inttructive. Neon Is both a noble a~omu

type Noble-Atom to (He,ihe,Ar,Kr,Xe,Rn); ~~'
and a period 2 atom Oft"U&I .1MAA I 4M..i mL

type Period.2 Atoma is (Li,Ie,B,C,N,O,F,Ne); ~IW 0&M

The Deshboaro Filire 2. Dashboard Hodel

All students are well acquainted with the saws are arrayed like aircraft cockpits. Same are
automobile. Sowe are more Involved with the analog, som~ are digital-. Students react ve'ryItechnology than others.. The instriefent panel of favoribty and are often highly challenged to
autcoobiles are highly diverse. Some are simple, describe as a racord in Ada the details of

switches, lig6hts, gauges, and knobs on. the
disshboard of their cars. Taken as a uia~t, the

-- dashboard is a relatively high Level. of
wabstraction, as is thea autcmobile itself.

U . C= i Students, after having been Introduced to arrays,
records, and nwvric types, return interesting and
varied homework osssigrvnts when given this task.
They seen to enjoy (as far as a student can enjoy

0 EEM 7¶~ homowork) their ability to express a complex reat-
world object In Ada arn1 begin to app~eciAte the
translation proccss between the automotive and
crmiputer languages. Figure 2 is an artual student

______ sumkaission for th's homevrork asuignmernt, com~plete
_____Om with radio/cassette and graphic faqua tizor.

- ~Football Sccreboard

s)I'R.'.Pm kasraa. ~ Av, 19VON3. with such types of assignments, it Is fair
'? ~ ~ ' . ~.~k) to test these concepts on exam.inations. Th e
e~,. ~Y.@Z t.S C* CIS.rr, football scoreboard design problem tests the
.~7P ~ I of '0 bM?. ~t0~,h¶.o4.) ability of the student to model this abstraction

19Yt t (0sýe.es,Pumnftfs~ , A^tr also as a record, using arrays with array
~ '-~'*a0s * aggregates and a record for the clock as namned

(,.fl.~o.wuT ~components In th*. record. The problem statement
,,~ ~ "~') ~and solution ei~e shown in Figure 3.

-O14 W 4.01 wm..e 'i .e...j 3
f **~j- n6"J .0-L

5iv.s UA' pgta S00R60A 1

typ Tes CrT NUMS A& tepe, 8-21I
20MOO 14L gyp MIt..,tng,89

t ype TesO,3CNSto t" 8-..?
y" ______ 1 ag*89

~ a~ at axaais4 * IIJ
1,ftio-Obs~fl Ituo ,WM $ 11 N pe IT1s Or "ry"1411i

CODAA.SAAMa sawceo

^-.W- ~ s..~g tyro TAM~ ir offaylI..2) of KNUCOZA tang. 3.5.o~'YS6 4 type ScWrs et arrayll..31 of Z$1tCtt 'I'lg 0-61
Stype COAST1U a 'XI to.& yf. .41 be iNOLMIN

VO.- type IYS ALL_&CCR UPOAZ. if

t~d .00-5 004mn s So~.i~zam *- myo,IFALutV&LSI,1AL8tS
a".~ ~ ~ ODi O .O.1s

TAM To 00 IL 1~m . 05,01
004 ts.ZrdT

*ad WnsCoS0A505

Figure 3. Football Scorebourd

11th Annual National Conference on Ada Technology 1993 146

The Resistor Robot The Automated Post Office

Sometimes it Is useful to supplement the Student program assignments cannot usually
course weith Lhlfanitiar subjects "an introduce other be very large given the time available in a one
br-anches of science and engineering ass part of the semester course. And yet stusdents should be
student experience in the Ads curriciulu. fewer introduced to topics anld experiences germane to
students have taken electronics than chemistry before Ada. Prograeming in, the Large is such a topic.
a programuing course. Passfing out a handful of Some day as professional prograunoers, they could be
resistors and asking what the color code represents one of tens or hundreds of prograntlers or. a
can add a new dimension to program design, Livens the project. Ada applications can exceed miLifons of
class, and anticipates the future of software ________________________

applications. The resistor robot provides such an To Posta -1c is *,i,,, soria* -iwoi toC l
experience as described in Figure 4.. of ~ 0-, too .. o.2 . ooh -tI

ad to~ttecoo- :_ a .0.cew.t-. ev...t -it-lca matea,'".c.m

taemt.. wan tmcail..ýad. *an.ul...at-. -h.10%,tm- c.

V'- ft- ,.CIU,.4a.A & to-*1 dool

... ,naa.....ti *eali.c.hIsn, O.' ,.1~ th. ft IWO pa ungo - -at. 5v -at. "a arcm y be-~ .. l- oinu

.............etaat.. ac' OWals it MAV NOT4 K flliaWiff t.%a .1-

act, fIES-. ~ttli 9W e "tIa , ri,9 I., .:tara. W' eek... .oltry..cn si
M.,ij at., pm,9 Cc CPSCe.."C it 9.I. c..1 %Ira tat1.W.SlaN , fAC.azO.,

:*top case qii? q.t lod Ito 1*9 fliftI M.14100. type Poo. 4. -~ FLO;?.

t".e PtRCEL..OAAa

W9a01? Si. *CALnq. 0.0. .30.08
iZIP-Coe S I147lOEa -. " 0.-94,999I

* saa:,sau ci~N , acerLF iI~ci ~IUE9 - LTWL1m raM*~ SE? CWT IDtTA : PhWLX1._.,0A$~ COST I ott P90LI

.2cat I* 6.y POU?.PARCIL it
me.1 t5 3550.

Vetio" I "IN9 ..Scdie r II*Csol (IO Fa P.1C)TA COST1? -1 *OtIL) to

30090iS?3I? NS~

pufyhmaca tatill:
I., .. 1Ka911
IA0.0IUS.uif I IBA!AltLI iIW 0i

O'KyoSa Is~t 11S(O, PRMN. I0?) aba , a)lC1.0.

"SoI *%D_= So %KAM~ 3140. MO. 4116005m,11 .al,MAWa, fCltl 1- 0,161

S011ala. 00UN20 10 SaW, UinA?2n mac 4 -at*.,*

KITTIMICI. I AA 9Ct11 0, 0.291

mTo 1111a=50. bIs * UAZas. a> C~2 0.21;

M= I 3mY3 amfSIW1OK COLON), Coll I' I;""S:'iU *ACTC';
(00'0 21, O W g TA, 3)o *late 11017.121T~cat * e 'a ..

mA~aaatm e two CoEPOtCO'2 IaISCosT to DA;A.atita? a !9TOCtI aAll CA"424

NWsasim 111111 mitamL19. alth IITIrb2 ToU.211P.CLI uaa POST..;t,2

basis Pta.ada.a MAIN 1.

1.."lae I L)fyp DATA IT* Is PAVOCL.DATAI
UL? LUL;U ci* 4i.U 20.

nvLaurtyo9 wJ.) 9414 1 WILE1TPfSJ
mule LI =To J11151 - a I." acne,. 3101Wti a ILTUAT.t1tEINAL); caCO.4 tao;

NEuTRl z To m1Ii nz aua I, Scatpa IMT111-0 "Do. i~cccpaa
MUSLIM* Ma~OVAL= 4Sa lot fatan Sl-0i paat IO~.~iRN Iia~a

old~b le ma. - v 'WO "" Ia,,ato.4

MICRA CM VA(IOTI),PO(-OPBIOISTA. i0JlLI.102Sa)

MYICLA OS00VALWJLToUSa;),pjy(...)# aIs.

WY Ubolt. souxto~wCOOK1. ZT~tTYAIOI
put Unflhadlr. a 3b. 1W,. Fw* ma GJIya)o Cap.t...

mhca 12Po.C0;I.I'sUtk atCT.0020 2 I ti?

£c~aaT~aa" .2'1 Fol.:

%%Ma SUM? ad pASOngbv ft..I ha at.,. CLIIIOAA)I

- PUT Libtume - 10 offorW)l 0.4.

WAlaagg.* IaaD

Figure 4. Resistor Robot Problem Figure S. Automated packsge mailer.

147 11th Annual National Conference on Ada Technology 1993

tInes of code and teams of programmers witll be n~edod
to write this code. A single project could e"ploy waiin eW~ Prcedure 1001.nt tI..1 with tonor. liblnqtok..
msny subcontractors and could be geographicaLity uns' who~ic luates tn*ari end c-os a~e tionat
dispersed hiundreds or thousands of miles apart. Wh~ 1".tS7 th Cold 4 be ~'2" suhn _t._a h
Small pro-yams to teach this point can be used ini the C"t"rSItDA n Outptt6 Io5q Mass 111fle.~otdir. to
classroom. The post otf ice problem is designed to 0b6fJr. *., 0 tt~ ICio

describe the functionality of a new packaae mailing Vioth, 111314t, too .91. lo

machine. The package specification Is provided by V.CVoMI o oGIcm
the instructor. it provides the interface between a &sa.*,utnstudent writing the application code in procedure Ise MS KRAs C mfaU 1 l0ffRAGSl,

pock~s 10 i8 Saw falmfaA?!Co ZO(II01,21111
called 'maiIn"a a ry. the student writing the 'Octý -0. bas10uLIWyZO1
imptementatie.n of the package specification In the took WMcmuga
package body. Separate cerpi lation, compi lation aiw pao.baa
order, ir.lormsaticn hiding, and prograimming team etySindependence are the learning experiences here as 04107 IZIC01N

presented in Figure 5. .J'm i"mo'ploc"'
task body NkIJRCiCfoCSUq~f is s4p41510,

Rendezvous with the Soda Mach~ine took body 5MRAtozpjNouCga is S*.per&tQ

Parallel processing with Ada's task CUZASI(ILR .) LA)SO ,
facilities is a new dimension in prog.-wiming foram OTrt
almost all undergraduates. !t is perhaps the most :VRG OUZ.T"
conceptually challenging learning experience In an..XI*r
Ada course. Six of sixty-two reserved words In Ada Vestpsrnlmazv I

are devoted exclusively to the task mechanism. Yet S 11Sta(_I o tZAS

the notion of parallelism is manifested alt arou" IS 91359-4 OA
the real-worid. Dank tellers are "serving" tasks, *s;.. ow

customers are Ilu3er" tasks. Sometiazes a t lrerxdezvo.asN "i

takes ptace between the two or sometimes such a fea"I IsCo" sNRlop

cofftnmwi cotIon is "guarded" or Ntir~i~d.u There are oh.. COLA *3 RJ~ S V1QUlo0Cd86LtefL CLAI
fqueues of customers and imultiple service requests. oboS @ :1P. 3111V1G Sazno UCat.azrLX, CRAPs,
The new vocabulary of task, abort, iwiry, accept, and h~ 5 .3or1
select, and terminate takes on meaning and th%. BUF eswIP
tools decipher the grammar for definitions such as '" TUIN u? ý o U 5IfafMCMf MeIIs, SO? AVAILASLI-11

selective wait ::xlt oyAlti locnI
select COACUT

when condition St. I asta,:tao COUThi .3

Select aLternative 1"`TR:ijf`a, Of 947MVLswuGal Of @OMUAN I- (FP&Z8tAUS.r7AU1 ,
(ort when conidition a), 6" to

select alternative
I else =15 START$MIIO lo

tequenoce~ofstatements I rut;n I5U1 SVT1 KAMT UGUT 'Is ?ZR?~rz~z,
eid smelect; a ;,

once again a familiar situation puts the I-''ntT22 eas UepxCOA ."If

student more at ease when tackling a new Language secapt SiLleCT ftIz. NO

construct. After all, humans can be represernted as COcutCOACUT It t

tasks and so can machines. Students encounter soda ItCL ON S

machincs daity and sometimes hourly. Pushing a 6*4 SSZCAC*
button to make a setection is a common man-machine of ? IITCLP*

interface. It is a rendezvous with a machine task wbf KT WONJT(COLA) -S d A

which "accepts" a selection or guards a selection "'ha me lo" CIGTIOSAMS) *
"rwhen"t the beverage choice is empty (a status Light a~*J~t 2iue?~s 520G Ldot
is illuminated to highlight this condition). soda Oil OUNI-ORAG ON -. I,'-

machines may even be smart in the future and 3n7tCUT bi
coemmuhnicate the time to restock to the vendor via a adi, At

modem. Allow the student to conceptualize this end fttl-p? IoutIOAOI

nto ofa parallel process, add a bit of fiction, ages"a 8fl.CUCOPA-o-, 4. .is1.
and the student may often embellish the minimum when No gmllcs?(OPAPSj
homework requilrement. The written statement of the accepa'it SEEC- AP9 do

problem and a solution is at Figure 6. GVJ CO IA~ ON -
PMOSLýif It GFtPf tOUH' . 6 t;#ft

A old Ssflrad "China often -uts id'5 035 503s5t.sol,

paricular '.acio I: .t available. A -tow0er Who ch03440
that =oaruo 1ay. 1;at 4a NUL.L result. and mt. either NSot box, sampey LIlOfIRflk .,

a-et Ser alo.io 00 o0 SeloCtlofl. to., al uh althe ta.cept aftlCTlGM,1, do no410155
&"at i.a' ,lrqrts I ot p-n s tay O.d ..£ ~OdO a0 sa Slet,

Otoks tOO easn To" aSchedoule o-.d an hi~t0fl-4I dets for adloop;

rates Of corsausption. This atOSwa OS .Ult' in £0500000
10.t .lo as 0.11 as lost ronan. ors1 tht v Oor If the PUT? L1WI59V5:zuiG8 s1ACGtat gp~y.

hstoraical rates of .onsuoptuon d. not patch ro01 dosednd. 11?? LI5CVtWOOA fL'CTMKAluLLY 6l l To 9S01?CXV)

A *050rt* Cold Saoeraae sachin. Could reduce frmustrat'Oft. PIoT..UIlCOla1 SLOT 5W~oitol PowtS Otrr.)
Increase r tasn ... to .noros energy, and qovoro all of t." end NEVIRAGZPoOotCRI,
pachion internal functions. It wou~ld coaploy an .:. iad
micr~oprcessor for these puts* #S. It could be c0up108 to a5iue6 oamciepolm

ýnctoflink oouth, ,61~ 6 :.Ln10 tCut too "Choin. us soptyFiue6 Soamcnerbl.
lall se laft A."n 1,0000 fotl would notify the -sd.OrS
he ::".rtrsr of its sooty statusbo ck h e t .1 .l% for £0on

in ortion, and thor turn its a-o pa.wa rOff.

11th Annual National Conference on Ada T~echnology 1993 148

JOE TERM PROJECT 5J.PgRAPHY

After comvpleting homework problemi and Kevin .1. CgAM is a lIeutenant cotonet in the US
laboratory exercises of the type above, studients are Army. He has taught Ada courses since 1982. HeI
tasked to choose a term project of their own liking, was the Ada course director at the US Military
A series of design reviews are conducted by the Arademy arod was a part-time'associate professor of
instructor who approves the project and the computer science at Jersey City State College,
commencement of coding. An interim code watkthrough Jersey City, NJ. He has done research In AdaI

Isf conducted, and (hopefully) the student submiits a parallel, processing at Rutgers University's
working program by the end of the course which Computer Aids for Industrial Productivity (CAIP)
emulates a moderately comrplex system. Historically, center. He earned a B.S. degree from the US
termn projects are between 500 and 1000 Lines of Military Academy at Wast Point and an M.S. degree
source code. Some include graphical interfaces. one from Columbia University. He presently serves asI
such project expanded the soda machine w~th counmting the product manager f or an Army personkleL HIS
change, portraying the status Lights changing state, project (SIDPERS-3) which will represent over
and a soda can dispensed. A partial Listing of some 800,000 source.lines of Ada code.
projects Includes the following system emuLations:

Automatic Sank Teller
Crewless Tank
State LotterY Game %
Drone Aircraft Target identifierI
Antenna Tuning System
Towers of Hanoi Graphics Gan*
Fast Food ordering System
Helicopter Autorotation Siamulator

The term projects represent the cutminat~tw
of what the student has learned, an 2s Importantly,

*how the student I dent If Ied wi th the new Ilanguage. I t
manifests how the student now thinks of the real-
world in algorithmic form. Time is allocated in the
course for students to give an ore! presentation and
terminal executi on of thei r project to the instructor

* and the rest of the class. Often there are questions
and challenges from the audience. There is a senseI
of satisfaction with the Ada skills acquired. It is
evident during the presentations.

CONCLUSION

The Ada language is an expressive tool for
modelifng the real -world problem domai n. Student can
experience their new language In ways that pa celot
spoken languages through a combfnatfon of top down
and bottom up design lectures and coding

*requrements. Ada's close affiliation with high
levels of abstraction affords the student with theI

-ability to conceptualize the problem domain and map
it to an Ada design. Learning Ada becomes an

*enabling technology for the student. The language Is
closely affiliated with the natural way of thinking
about a problem. Problem examples, hon~ework, labs,I
and term projects can provide a fertile test bed for
students to experience their new Language and build
confidence in their programming ablities.I

REFERENCES

1. Ledgard, H. and Narcotty, N., The Programmning
Language Landscaoe, Science Reseerch
Associates, Inc., 1981.

2. Downes, V. and Goldsack, S., ProgrammningI
Embedded Systems with Ada, 'Prentice-Halt, Inc.,
1982.

149 11th Annual National Conference on Ada Technology 1993I

Integrating Ada Into Realtime Laboratory TeaeDing

Dr. Rodmey J. Dokdmnn
Department of Electrical and Computer Engineering

Valparaiso University, Valparaiso, IN

Abstract Some effort had been spent to move the
Engineering Departments into a software design

This paper describes a succession of mentality. Until 1979 software was taught pretty
attempts to get Ada teaching sarted in an much in a syntax and semantics style only, with little
engineering curriculum. The target of realtime or no design process taught. Then the design
systems teacbing is described. Early experiences teaching beoan and shortly thereafter the switch
with compilers and tools are included as a measure from FORTRAN to pascal occurred to allow more
of how to proceed. Classroom experiences are expressive power relative to the design process.
documented with the notable positive and negative
results exposed. Curriculum revision to introduce This author and a close colleague gained a
Ada as an enhancement for laboratory teaching is considerable experience teaching the software
described. Finally the plans to use Ada as a design process to the entire freshman class of
realtime language to target MC68000 based Engineers. From our vantage point in an Electrical
applications are presented. Engineering department, the cost of software was

seen to take an inordinate bite out of a project
Introducina Change In Engineering budget. This cost was being borne largely because

of the inefficient and often ineffective design
Change comes hard in Engineering practices.

teaching. New ideas are often mistrusted until they
have met the test of time. To say it more succinctly As that teaching matured, the Computer
Engineering Educators are among the most Science faculty watched, and after two years of
conservative professionals in the world. They are successful teaching with pascal the mort. mature
quick to remark how old-fashioned things are, but faculty decided that they could follow suit and
are slow to make a really significant change. The change the CS curriculum to the pscal language.
changes are left to scientists and a few maverick Engineering faculty in other departments watched
research and development oriented engineers. Then suspiciously until they saw the capabilities of the
Engineers are quick to jump on the bandwagon, students emerging from the introductory teaching.
once the band is in full swing. The new student was able to dtsign programs and

implement them in pascal readily. They soon
In the area of softwa.e, the Engineer is learned that implementation in FORTRAN was also

suspicious of any price for software until it is shown quite possible from the new design practices.
to solve the tedious problems of design and analysis
that are a large part of Engineering. Thus, So some Engineers stayed hooked into
programs like ANS'YS or SPICE can command a FORTRAN even if it meant using the terribly
high price while a compiler is of little or no value, inefficient PC-based FORTRAN compilers. Slowly
Further, the development of software is given little they maneuvered toward pascal, some actually
or no value by Engineers who are not familiar with accepting programs written in pascal in the upper
the process of software system development, division courses. But, as they shifted, they began to
Software pirary on the other hand is not largely place great worth on the programs written for them
practiced among Engineers probably because of by these new students with better capabilities than
their strong adherence to a code of ethics. their predecessors. The faculty started to place a

value on the code and so began to "own" it as
Thus for Engineering to embrace Ada as a though it were irreplaceable. In hindsight this

teaching language was a particularly difficult should have been addressed as it began. For now
proposition. Any compiler is viewed as expensive the situation b-came one where a highly
and Ada was doubly or triply so during the early conservative group had placed a se!f determined
Ada development times at Valparaiso University. value on something and while many were attached

llth Annual National Conference on Ada Technology 1993 150

to FORTRAN most were hooked on the quality of the extensions were not easily ported to other pascal
the pascal programs their students had created for compilers. Thus the representation clause, so
them. Experience is truly the best teacher. obviously included in Ada, showed it to be much

superior to the pascal in use.
Realtime Systems Teaching Emer's

In the mean time, Electrical Engineering Necessary Early Experiences
began to duvrelop some good capacity for realtime I
system work. Realthne in this environment meant The effort to bring Ada into the curriculum
that some physical system was connected to a then began with an earnest search for a compiler to
computer and would respond determinably to support our efforts. At the same time the teaching I
stimulus from a computer program. Much work of Ada as a language was planned. A pertinent
was done in C and assembly language ana in our paper by Jean Sammet pointed out the need to
laboratory all the work was done using MC6809 focus on more than the language features [11.
processors. Slowly a capacity to do the realtime Rather there was a pressing need to move our Im
work in the pascal language was identified as a good introductory teaching into a more philosophical
idea. A compile time and run time system was direction. This resulted in a formalizing of a
developed for programming embedded systems in taxonomy of sequential program as described in I
pascal. This was developed by student and faculty Bohlmann [2].
effort and is still a viable system for such work.

The compiler search resulted in acquisition I
During this stage a critical event occurred of a non-validated compiler running on a PC. The

with the author being anpointed to an ASEE compiler was well documented and the company
summer fellowship at NASA-CALTECH Jet corrected our difficulties with telephone and updates
Propulsion Laboratory. During that summer of as needed. R & R Software provided us with a '
1981 Ada was beginning to take off for Department packaged JanusAda compiler in ten copies [3]. This
of Defense processes. The supervisor for that allowed us to provide Ada compilation services to
summer appointment was Dr. Ed Ng who had been students at our public sites in and around our
active in the development of Ada and was among its computer center. The cost of the compiler was
strong proponents within NASA. Needless to say borne by the budget in our department, and so
that ASEE appointment had a strong influence to needed to be contained preventing us from putting
begin looking at Ada as a next step after pascal in the more robust compilation services on our central
the laboratory. time sharing system.

Reading and study soon uncovered some With the effort to teach Ada underway, the i
unhappy features of pascal for software engineering, limitations of this early compiler were quickly
Separate compilation was severely lacking in pascal. uncovered. The students routinely attempt to use
It was possible to use pascal Include features, but the features of Ada as documented in the Ada
that does not really allow the gains possible from Language Reference Manual or LRM [4]. They
dividing a large program into separate parts for equally routinely misuse those features leading to
development. While some pascal dialects addressed some confusion. This is where the study and I
this deficiency, the realtime development system in experience of the faculty is a critical factor. Such
use had no prospect for correcting the problem. problems as small symbol table space, and program

and data size limitations on PC's were part of our
The method implemented for realtime learning process.

control in pascal had been a set of procedures and
functions which allowed for addressing of hardware These problems were not unexpected.
memory locations and fielding of interrupts. The What is of interest is that the scope of problems I .
fact that the pascal featurcs were working well was that the faculty felt comfortable assigning to
of great benefit to the students. The further fact, students increased dramatically with the prospect of
that the pascal extension which allowed those success because of the features of Ada. It was now I
features was developed locally, was a serious possible to do a divided development with separate
deterrent to convincing students that high level compilation. During the first project the students
languags was preferred over assembly. After all, were divided into groups of two or three. Each

151 11th Annual National Conference on Ada Technology 1993 i

" " I • :~~~~~~~~~~~~I i -.. -... . .'...

• • j

group was assigned responsibility for a part of the now a Verdix company, offered a price competitive
design. Class wide plaining sessiors were i•sed to deal on a compiler. Looking primarily for a
divide the problem and assign the parts. The next validated compiler, cost was the other factor in
class meeting was d&vott:d to discussing preliminary choosing the next compiler. Meridian University
specifications as developed within the gioups. Support provided us with evaluation copies of their
These specifications were evaluated for PC-based Ada compilers. The compilers solved all
completeness and service quality to the project. of the problems that had earlier limited our use of
Once the specifications were agreed upon, each Ada. The version 4.0 AdaVantage compiler solved
team had the assignment to cod-- the specification the symbol table problems and the extended
and compile it into a common library. This step memory compiler solved the large program space
proved to be a pertinent catalyst for the twarns to limits when needed. Not unexpectedly, the new
produce body text to support the*.r own compiler brought sonne idiosyncrasies of its own.
specifications.

Shortly after selecting the Meridian Ada 4.0
Though the compiler in use at th., time had compiler as the replacement, Meridian announced

,uII !imitations, the students were able to progress two products of interest to us. One was their
rapidly into proper design for testability and AdaStudent which provided a validated Ada
reusability. These features continue to be important compiler with the limitation that no library linking
features of software engineering. Further, the was allowed. This simply required that all code be
difficulty with the compiler foster'-d a language compiled into the same library. For small programs
lawyer attitude among the better students. This and syntactic learning this was superb. Superb
attitude was the key factor in extraction of the because of its price. Our one time fee of $1000
pertinent semantic features to bt applied. As the allowed us to distribute ten copies of AdaStudent to
teams interacted, questions arose about how to our studeuts for use on their personal computers.
express algorithm or data requirements. The We also had the larger compilers for the more
language lawyers among us would quickly come up central sites and so the combination worked well.
with solutions. In retrospect, that capability was The second product that appeared then was the
necessary for the success in our efforts. A perfect AdaZ product which later changed name to
compiler may in fact not have enabled us to develop OpenAda. The cost of this complete compiler was
that capacity. dropped to $149 and several students and faculty

opted to purchase their own compiler. This
This first experience added valuable compiler had an integrated environment for editing

knowledge into the environment at Valparaiso and compiling with language directed edit functions.
University. The students felt like they were learning It showed some direct competition for functionality
and doing some serious large program work. The with the Turbo Pascal product in use in our
faculty felt like they were learning and leading freshmen course.
students into the philosophical approach already
recognized as the appropriate method of software Continued use of the compiler started to
teaching. While the over all functionality of the first uncover some of it failings. During one process of
project was never realized, the students who development we discovered that dynamic me.mory
participated uniformly rated that as their best unchecked deallocation was dysfunctionl. We also
programming experience to date. In the years that experienced some problems with order of the
have passed, most of those involved, students and compilation of stubbed sub-programs. The most
faculty, have come to a much larger experience. recent upgrade solved the problem of memory
This was a good start. control and as of this writing compilation order

problem is being investigated by Meridian. Even
Beyond that first project, the JanusAda with the problems encountered the Meridian

compiler was used until further budget, was compilers served us and continue to serve our needs
allocated to upgrade. One upgrade was purchased in a more than adequate way.
and donated to the school by the faculty involved,
but finally it was time to search for a new compiler. Classroom Eynertences to Build on
In the years that had passed the compiier
technology had progressed. Several validated The first of the classroom projects
compilers were available for PC work. Meridian, attempted with Ada centered in a course on

11th Annual National Conference on Ada Technology 1993 152

simulation. Past work on event driven simulation and Bunt [61 for the firat few years and then shifted I
provided a platform for devdoping an event driven te Finger and Finger [7] for a little better
simulator for digital sy.tems work. The goal of the Engineering flaor. Students worked with central
project was to apply Ada to a real problem that had time sharing computers and at the best times, with
testable results. selected students, projects were as complex as

image processing and separate modular compilation.
This project afforded the experience of Trbo pascal came into vogue toward the end of life

separate compilation, with team efforts for of the course and became the compiler of choice ii
specification and body development, and with because it supported the Ada-like feature of units.
language lawyer attitudes as described earflie:. The
basic concept of a generic insertion queue was a The proposal was to take that course, select I
principle feature of this work. Students were a group of students, and in one section cf five,
delighted to learn of generic capacity to allow for convert the course to the language Ada. In
full featured programs. concession to the FORTRAN, users the pascal I

sections used a textbook with some FORTRAN in
Implemented in R & R JannsAda the it. The Ada course used a w:il written text by

project faltered with the large data needs and Putram Texel [8]. This book introduced package as
expansive programs created by novice Ada the base concept and built on it throughout. I
programmers. A good experience allowed for
further work on Jades with a later group of Projects in the Ada course were chosen to
students. It is a manager's responsibility to exemplify Ada and at the same time parallel the
maintain the documentation and code for such a projects in the control sections. Exception handling
hiatus in activity. The one year ! layover was for input output processes, instantiation of generic
managed by the faculty and allowed for even more input output routines, overloading and other
programming learning as the problem was features of Ada were necessary introductory
resurrected later. material .overed in projects. A final project using

a ;raphics utility library was attempted. This
Creative Course Development however faltered because of failures in the graphics

package.
Teaching in this way was nbt a routine

thing. The courses on Ada were housed in a catchall Students were selected based on a self I
Topics in Electrical and Computer Eng inevying title, selecting process. Experience in high school with
The Ada topic was germane to the! course with programming other that Basic was required.
different problems chosen by students. ,Aother Predisposition to a computer intensive Engineering ,
feature of this course is that it is not a fixed number curriculum and career was suggested. With this•
of credits. In the four semesters that Ada was simple guideline and some advisor assistance a
taught under this rubric, semester credits of one, group of 17 freshman were identified as the Ada
two, and three were all used for student records. guinea pigs.
Each student agreed on a level of work with credit
commensurate with the lev.l. Projects allowed for The performance for programming and the
varied participation and students were able to fine perceived capability of the students after the course I
tune the workload and credits to their curriculum was positive. The philosophical approach that had
needs. Minimum requirements of simple programs been tried and true in the previous pascal courses,
ensured basic knowledge for the poorest performing excelled in the new Ada section. The performanc, _
students. This topics course is documented in the of the students in the following course would be the
CREASE 6.0 catalog [5]. test of how well the approach actually worked.

Experience behind us, a proposal was I
prepared for the College of Engineering to do an Evaluatin2 the Exucriment
experiment with our freshmen course, Introduction
to Algorithms for Computing. This course had a rich The second course on Algorithms, taughtI
history of teaching with clear goals and syllabus. It outside of Engineering, in the Mathematics and
had begun with FORTRAN aud progressed to Computer Science Department followed in the
pascal. The textbooks used began with Tremblay immediate next semester after the Introduction

l th Annual National Conference on Ada Technology 1993

course. This course enrolled students from three Towe-rs of Hanoi probk m. He cho:;s: to use block
introductory courses. First, students from the gral ,ic.s for a two dimenhional representation of the
introductory CS course were enrolled. Secondly the soli 'on as it pregressed. The general organization
pascal sections of the introductory engineering ...s solution was to make each ring a task and
course fed students into the sccond level algorithms each channel for moving a ring on the scrc,'n a task.
course. And now for the first time the third group, The rings were then free to 'ove as the program
students whose first experience was in Ada, were could identify a place for 4 ring to move and
cnrolled with the others. allocatc a channel "ask to carry the ring. The Ada

source code is not particularly difficult and is
The pascal language was strongly available from the author.

entrenrhedl in this Algorithms If course and posed
some challenge for the Ada students. While the Another topic dealt with extending the
Engineering faculty fell they were prepared to fhvnetionality of Ada to matrix opera~ions. Students
contir.ue their studies, the CS faculty balked, were assigned th(. proHenm of creating a set of
unwilling to do comparative studies with !wo overloading get and put routines to get and put
languages. Th. Ada 'tudcents requested help vector and matri; data. An intereting note here il;
sessions for the parallel comparisons allowing them 'hat the students were all taking Ada as a second
to do pascal wo;k. The author agreed to the help language ard were weak in t;-ere notions of
sessions under the nroviso that th-, CS factlty attend overloading. Though wv.- had discussed overloadig
to guide them in the right direction. At first this in class the first cut solutions of all but a few
felt like the Ada teaching had failed to be broad students failed to use the procedure names of get
cnough. However, as the help sessions progressed and put to overload the gcneric operators with ones
the student, themselves took over the study, and in having vector ar matrix parameters. After a brief
the manner that I had hoped fcr, th(ey used the discussion in class, the students were quite receptive
philosophy that they had learned studying Ada to to the suggestion that the proper solution was to use
extrapolate the pascal needed to excel. The CS the names get and put as overloaded operators. A
faculty also began to get a positive exposure to Ada further featre suggested by students ,hat completed
as the students woeld c-,include that they needed to the input output package, added th,; parameters
find a "different" method to do in pascal what they standard to the genc:ic input on'put procedures for
knew readily how to do in Ada. As they worked numeric types. The fore, aft, and exp perameters
out the detail they would implcmen! iheir ideas in were added as was a parameter to control the
Ada and then study how to implement the same display of indexes as output was presented. Default
algorithm., in pascal. Tite CS faculty finally values were included to make the routines conform
accepted the Ada solutions as solved problems and as much as possible to the generic input output
!he Ada students were successful in the course. routines documented in the L.RM.

The prompting index operation was most
Success Builds Interest useful for ;nteractive output of array data. Since

much of the programmirg done was for interactive.
A continued effort for -topics courses use, the prompt was selected by studen.., as an

allowed for a wide va~iety of experience with Ada. important feature. Thus, the overall package for
Among the first topics to be studied in detail was vector and matrixc input and output was
tasking. This was chosen because of the strong implemented and the students were then assigned
interest in realtime multi-processor applications, the problem of creating a matrix and vector
Applications such as this are a regular part of the calculator. Students less able to create such a
production systems in the steel mills in Northwest program were allowed to do a sequence of get and
Indiana. As a consultant, the problzvns encountered put operations with computations in between. The
were largely with the tasks and interprocessor matrix and vector operations were acquired in a
communications when multip!e processors were matrix package authored by Dr. Roger Lee and
involved. Thus, some study in the area of tasks was moved by ftp from the Simtel20 Ada repository [91.
of interest.

During the time that the matrix input
One student in the tasking topic, chose to output operations were under development, another

impkanent an array of tasks to solve the classical section of students in the same semester accepted

11th Annual National Conference on Ada Technology 1993 154

iI

the assipgnmnt of perusing the network archihes for the student satisfaction was high.
Ada packages of use to our programming and
teaching. 'I hough Valparaiso University was using A New Approach with a New Tool
a limited BITNET connection at the time the
resourcefdl students were able to discovc: and With the third year of topic teaching a new
retrieve several useful artifacts. For graphics software product was acquired. This tutorial
interactions a set of wouse drivers in Ada was product, NSite Adit [10], allowed for students to
retrieved and these same students also retrieved the study iopics in Ada in a computer directed manner.
array operations package for their fellow students in Thr limiked budget however, put some constraints
thr other section. One of the special features of on the usa of the built-in examining functions.
Ada is that the packages and others that followed Students needed to record their own quiz scores
were directly compiled and linked into our and keep track of their own progress. Even so the
developing system. This was a :"ather important students progressed rapidly into a good knowledge
point for students who were just starting to see the of Ada and software engincering. The directed
big plcture in large program developmeat. They learning was an excelient approach to instilling the
realized that the programmer does not r.ecessarily philosophy that had come to be a part of our
need to create all of the code for a project. Sor, teaching. The material itself was orgenized into
code can be acquired by network or purchsed from chapters that followed the organization of the LRM.
vendorE to the *ob done more rapidly. With this The studenms studied the material in sequence from
also comes an awareness for software license and start to finish.
propriety of use.

Often times the students would get together
Brief comments are in order for two other as groups and pursue a chapter in the tutorial

Ada projects done in the topics area. The first was material quizzing and discussing the matters as they
done for a student who also was a bicycle designer went. The;' then would jointly solve programming
and fabricator. The students in the section with him assignments and experiment with new ideas based
agreed to create a bicycle design progran, to select on the progranis completed. The style of learning
from standard parts and create, a bicycle. Special which resulted was superior to the lecture and
parts were also included to al!ow for custom frame discussion style that had been in use. With this
sizing and custom wheel development and such. style the interaction between faculty and student
The overall success of that project was limited, moved to a joint investigative phase. Now students
Students working in that section were not as well could assist in raising the level of language
prepared .o take on an Ada task at the beginning of understanding which the faculty was pursuing. The
the semester and almost hatf of the semester more rapid acquisition of language capability by the
elapsed before the program design could begin, students also allowed for more direct programming
Starting this late with a design for the program, the assignments.
code never reached beyond multiple group
specifications being compiled successfully. The NSite product, as first acquired serves
Implementation of only a few of the bodies limited quite well despite a significant number of
the testing of the program to only a very few typographical and conteist errors in the tutorial
functioas. Students, even sc, reported confidence material. The NSite tool is at this time under re-
that, the large program they had started was well evaluation at Valparaiso as we consider a
designed1 and on the brink of completion. competitive product LearnAda [1 which covers the

same need. Independent of which tuterial product
The other project undertaken was to is used, the computer based tutorial will "provide a

attempt to create an Ada package for a DASH-8 good method of introducing the language. It also
and DASH-16 data acquisition system embedded in provides a rapid access to reference material both .

z PC. The approach by this sophomore group was in the tutorial text and by having a copy of the A
to first choose between creating new code iand LRM on line.
translating thc original pascal drivers. They opted
to translate the pascal drivers, largely because of With students studying Ada by tutorial,
their familiarity with pascal and less familiarity with classroom time was free to pursue specific
hardware features of things like data acquisition programming topics. One topic that was studied as
systems. Again the completictn level was limited but a means of understanding the Ada run time support

155 11th Annual National '.3nference on Ada Technology 1993 I,,

S4, - , ., - • ' ./ -. •.

package was task preemption. The Meridian Dequeue, and QueueSize naturally dividing the
compiler in use provides for task preemption and so problem. The procedure Enqueue and Dequeue
run time controlled time slicing and priority and the function QueueSize were created as stubbed
assignments for tasks were usable. Simple separate bodies. This allowed for complete syntax
program5 were written that displayed time slicing free compilation prior to finishing the detailed
and task priority behavior with preemption enabled algorithnr. It also allowed for a complete
and with preemption disabled. The resolts were not replacement of the internal storage method for the
surprising for the experienced faculty, but were sorted queue, should performance become an issue
powerful examples for students just starting to in the use of the Insertion Queue. Students were.,
consider how a computer could be used in a malti- dividod into three groups to complete the stubs and
tasking manner. The amount of time requii'ed to the whole package was brought together with a test
do the example programs with the class would not program four weeks before the end of the semester.
have been available if the class time would have
been used for Ada information lectures. The Testing uncovered a problem with
computer based tutorial enabled these studies, unchecked deallocation which was corrected by a

compiler upgrade which was purchased earlier and
A Project That Works had arrived about a week before it was needed.

Some call that just-in-time delivery while in our case
Experience builds confidence and so it is in it was just-dumb-luck timing. Another matter that

the case of experiences using Ada. The philosophy was uncovered in testing was discovered as the
of software engineering and the use of Ada became separate bodies were compiled. The library
ingrained with the faculty. As Ada-9X promised to manager does not update the body executable code
come into existence, the experience with Ada-83 was for a separate body when that body is compiled
continuing. During the Fall 1992 semester the most after the parent unit. The order of compilation is
recent assignment was made to a group of being looked into by Meridian and we expect that it
Computer Science studejits studying Ada under will be resolved cleanly. In the mean time we can
Engineering faculty supervision. These students assume that what we are trying to do may be
were given tl:e assignment of building a part of the outside the scope of the compiler and constrain our
old JADES project in a new way. In order to do compilation order to not recompile separate bodies
event driven simulation an ordered queue of events without first compil;ng the parent.NI to be processed needed to be supported. The
assignment given to the group was one of building The Inse:'tion Queue was completed and
an Insertion Queue which contained elements and tested with a variety of queue element types and
invoked a user supplied order relation to insert new diftering order relations. It includes the exceptions
items in the Queue for later removal in order. This Full Queue and EmptyQueue. This package is the
has direct application for sequencing eveuts during first generic package at VU that was completed well
simulation. and with full functionality and good documentation.

The assignment was smaller than previous
The creation of a generic procedure to assignments, but the problem was solved in a more

provide insertion queue capability proved to be the elegant manner than previous solutions. Finally, the
most interesting assignment to date. The technical tools of Ada were available to the students because
task was not that difficult. What was interesting is the faculty had enough grasp of the language to
that the students were Junior and Senior level and coach them properly.
had a deeply ingrained pascal flavor to the their
style. Specific discussion about overloading, generic Curriculum Revision to Include Ada
objects and instantiation details was a regular part
of class meetings. Students began the semester with As the Ada language experience developed,
pascal knowledge and used the NSite tutorial to the curriculum at Valparaiso University was under
gain Ada knowledge. It took about five weeks revision. Four disciplines of Engineering worked to
before the final form of the generic queue could be create a curriculum that wuld best serve each. As
envisioned by the students. part of that work a serious review of programming

teaching was done. Within Computer Engineering,
Once they had a clear view of the problem Ada was selected as the language for realtime

it was divided into three parts with Enqueue, embedded systems teaching. This lead to a decision

11th Annual National Conference on Ada Technology 1993 15

S4 """ ." "

A 'X' ..

to supplant pascal from the early curricuium and declared in Compiter Engineering. Using logic
use Ada as the first language. It also results in an design as the basis, it is expected that benefits will
impact on the second and third year programming accrue for software engineering teaching in the first
courses that need an Ada revision, programming course.

The other disciplines of Civil, Mechanical Directly coupled to all of the Ada
as d to a lesser extent Electrical Engineering development is the decision to use Ada to teach
reached the conclusion that teachin3 about embedded systems design, The Computer
programming was much less important in their new Engineering laboratory sequence and two elective
curriculum. This reflects the thinking that programs courses address the issue of high level language
needed for discipline specific activities are available usage for embedded systems in various ways. Pascal
commercially, and little or no programming will be was in use for ten years and served well as
needed to apply them correctly. There is even the described earlier. With the MC6809 processor, and
sentiment that when programming is required it can a locally extended pascal native code compiler,
be employed from knowledgeable persons on an as students were able to create significant products for
needed basis. course work and for sponsored development

projects. In one case, the students were able to
Those conclusions might be better demonstrate the vaiue of high level language

understood if one reviews the results of the development over assembly language for a small
curriculum discussions. Pascal was deeply company. The dramatic decrease in cxpected
entrenched and pascal tends to make programming development time was a convincing experience for
easy as compared to using Basic or FORTRAN. the project Engineer.
Thus the Engineering professors were in a better
situation with pascal than they had ever been. With pascal working so well, it was no easy
Secondly, there was a strong sentiment that decision and is no easy task to work toward a major
FORTRAN should be taught to engineers. The technology shift. Yet, with the better featut es found
arguments for FORTRAN reduced to "There are a in Ada and the better cpu capacity of the MC68000,
lot of FORTRAN programs running." and "Most of the time was right to make some changes. The
the other schools are doing it.* While these vendor support from Motorola and from Ada
arguments are irrefutable, they do not, in the compiler vendors is growing as we make the
authors opinion, warrant continuing with a language nr.cessary effort of contacting them and exposing
that has successfully completed its service, our needs. This continues to suggest that we are

making progress.
There also surfaced a sentiment that

Valparaiso University College of Engineering should The shift to the MC68000 is now complete
not be the leader in the area of Engineering with the installation of MC68000 based systems for
Software teaching revision. Noting that, the software and hardware development. These systems
decision was finalized that Computer Engineering were built in conjunction with the University of
faculty will teach programming for Computer Toronto where they were developed. The features
Engineers and Electrical Engineers and that Civil of the boards include 2Mbytes of memory, both
and Mechanical Engineers will take computer AUI and BNC ethernet ports, four RS-232 ports,
literacy courses specifically about software in their printer ports \and parallel I/O connectors. The
discipline. This result is now being implemented network conhection allows the boards to be
and for the time being seems to be the correct supported fkom our growing workstation
decisicoi for our school. environment.

Thus the Computer Engineering course, Presen ly the programming for laboratory
Algorithms for Computing, based on Ada, will be and course wor is being done in C and assambly
taught for the first time in the fall of 1993 to the language. Preg-ams are compiled or assembled on
first wave of Sophomore students studying in the a Sun 3/60, an MC68020 based workstation. The
revised clrriculum. They reach this first course as compilers and libraries are part of the package
Sophomores because we chose to introduce received from University of Toronto. Object
hardware concepts first in the second semester modules are loaded into the target system by ftp
Freshman year immediately after the major is connections via the ethernet. It is also possible to

157 11th Annual l~acional Conference on Ada Technology 1993

/.

I!

load object modules from the TTY ports. Ada-83 is now ten years old. We have followed it
and used Ada-83 and as we begin teaching it in our

While C is not the language of choice, it is mainstream curriculum, we expect to migrate to
the only compiler at VU at this time capable of Ada-9x easily and painlessly.
generating MC68000 code. Negotiations and
financing are in progress to place an Ada compiler Conclusion
on the workstations and to develop the methods of
compiling Ada code and loading it by ftp connection Ada knowledge is not easy to acquire.
as is currently being done with C. Such operation Experience is needed to build the confidence in
is available for purchase and is actively being faculty that Ada is neither bigger nor smaller than
pm sued. other programming languages when beginning

teaching is considered. There is a limited amount
of information that can be imparted to beginning

Ada Blossoms students. It is important that the information be
well selected and well presented to foster a quest

The blossoming of Ada at Valparaiso for knowledge. With Ada, software engineering and
University has been a long process. Ada is not yet philosophical approaches to programming,
in full bloom though critical junctures are past. Computer Engineering students at Valparaiso
Recent agreements assure better funding in the University will be quite ready for the future
future and support for faculty development to a development and application of computer hardware
higher level has recently been funded. The demand and software.
for Ada learning continues to grow among our
student body. That demand may also grow in the
work place as the students and vendors get the Ada Bibllogravhy
message to the managers.

[1) Sammet, Jean, "Why Ada is not Just Another
There is no substitute for interaction with Programming Language," Communicatons of the

colleagues in other places who are doing Ada ACM, Vol 9, No 8, August 1986, pp. 722-731.
teaching. Thus, the support for attending ASEET
and ANCOST sponsored meetings in past years and [2] Bohlmann, Rodney J., "A Taxonomy Approach
the recent support for two of us to attend Tri-Ada to Introductory Programming", IEEE Transactions
is both useful and necessary. The effective return on Education, February 1993.

on the investment in our case was greatly enhanced
by participation in tutorials at the meetings. Over [3] R. R. Software, JANUS/Ada Compiler for 80x86
the year:s, tutorials by Engle and Dominice [121, Computers, Madison, WI.
Cook and Vega [131, and Rogers [141 were all
attended and have contributed significantly to the [4] ANSI/MIL-STD-1815A, Ada Programming
positive Ada experience. Language, January 1983.

Now the plans are frozen which will allow [5] CREASE 60 Catalog of Resources for Education
us to wcrk toward a goal. The obstacles of in Ada and Software Engineering, Ada Information
development have been removed and the new Ada Clearinghouse, Lanham, MD, February 1992.
based, Algorithms for Computing course is being
readied. The impact on the second level courses is [61 Tremblay, Jean-Paul and Bunt, Richard B., An
anticipated. The compiler for laboratory use wil! Introduction to Computer Science an Algorithmic
grow out of the current funding mechanism. Approach, McGraw Hill, Inc., 1979.

So once again it is time to begin. Begin, [7] Finger, Susan and Finger, Ellen, Pascal with
because up until now Ada teaching was an Applications in Science and Engineering, D.C. Heath
experiment which was providing great experience, and Company, 1986.
Now the students' learning and career development
will depend on the results. This is a serious matter [81 Texel, Putnam, Introductory Ada, Wadsworth,
and we do not take it lightly as we begin teaching Inc., Belmont, CA, 1986.
introductory programming with the language Ada.

11th Annual National Conference on Ada Technology 1993 158

Blblloaranhv. Conthlied

M91 Lee, Roger, Matrix Package, e..r.ion 1.0, Naval
Air Development Center, Advanced Software
Technology Division, Warminster, PA, February
1984.

[101 Network Solutions, Integrated Training
Environment for Ada, NSITE-Ada, Version 2.1,
Herndon, VA, December 1990.

[111 Aetech, LeamAda for MS-DOS, Carlsbad, CA,
1992.

[12] Engle, Charles B. Jr. and Domin-ce, Tony, Ada
from a Management Perspective, and McKee, Gary,
DoD-Std-1838 and other Environment Interfaces,
Fourth Annual ASEETf Symposium, Tutorial III,
Houston, TX, June 1989.

[13]Cook, David A. and Vega, David, Ada Tasking
and Generic Program Units, Sixth Annual ASEET
Symposium Tutorial, Alexandria, VA, September
1991.

[14] Rogers, Patrick, "Realt;me/Embedded Systems
and Ada, Volume 1, Tutorial 3, Tri-Ada '92,
Orlando, FL, November 1992, pp. 105-260.

About the Author

Dr. Bohlnann is an Associate Professor of
Electrical and Computer Engineering at Valparaiso
University. He specializes in realtime systems and
teaches courses in the areas of computer
architecture, computer networks, and VLSI design.
He is a Professional Engineer in Indiana, a member
of IEEE and IEEE Computer Society and is the
Vice Chairman of the Calumet Section of IEEE.
He is also a member of ACM and ACM-SIGAda.
A consultant in realtime systems work ard
microprossessor deve!opment, Dr. Bohlmann may
be reached by e-mail as rjb@gellersen.valpo.edu.

159 11th Annual National Conference on Ada Technology 1993

NEXT GENERATION COMPUTER RESOURCES

(NGCR)

PROJECT SUPPORT ENVIRONM ENT STANDARDS

(PSES)

Tricia Oberndorf Carl Schmiedekamp
NavalAir Warfare Center NavalAir Warfare Center
Aircraft Division Warminster Aircraft Division Warminster
Code 7031 Code 7033

P.O. Box 5152 P.O. Box 5152
Warminster, PA 18974-0591 Warminster, PA 18974-0591

LCDR Vincent Squideri
Space & Naval Warfare Systems Command

SPA WAR 2312B4
Washington, D. C. 20363-5100

takes an open systems architecture approach and
SLWNMM ,RY revolves around the selection of interface standards in

six areas. One of these areas is project support
The U.S. Navy has embarked on the Next Generation environments (PSEs). The projects supported by the
Computer Resources (NGCR) program to fulfill its FSEs develop, enhance, or maintain computer-based
need for standard computing resources. The program systems or prcducts, including those in which Ada is
revolves around the selection of inierface standards in used. These interface standards should be useful for
six areas. One of these areas is project support projects focused primarily on software development,
environments (PSEs). The projects supported by the on hardware development or on the concurrent
environments develop, enhance or maintain computer- development of hardware and software.
based systems or products. These interface standards
should be useful for projects focused primarily on BACKGROUND
software development, hardware devc!opmeut or the
concurrent dL.velopment of hardware and software. NGC
They will include support for Ada. This prper
discusses the approach and plans for the selection of The Navy has a long history of developing and using
these PSE standards and the issues that must be standard computer products. When computer
addressed for the effort to be successful. technology was in its infancy, the Navy wielded

significant influence in the market, setting its own
INTRODUCTION requircments and developing its own computer

designs, inchiding Instruction Set Architectures
The U.S. Navy has embarked on the Next Generation (ISAs). Standard (.omp-iter implementations (i.e.,
Computer Resources (NGCR) program to fulfill its buying "boxes") and upward compitible ISAs have
need for standaxd computing resources. The program been the foundation of the Navy's computer policy.

11th Annual National Conference on Ada Technology 1993 160

This policy has been motivated by the fact that
software can adapt a common computer design to Application of these interface standards will change
meet many different applications. the Navys approach from one of buying standard

computers to one of procuring commercial computing
But the NaYs current computer standardization resources which satisfy the interfaces defined by the
approach is not technologically competitive in todays standards. These standards will be applied at the
environment of rapidly improving technologies. The project leel rather than a Navy-wide procurement
Navy acquisition and budget process takes a long time level.
to field new standard computers, so long that the
produced technology is often old (compared to PSESWC
commercial technology) by the time it is fielded. The
obvious logistics benefits associated with standard The effort to establish the PSE interface standards
hardware are offset by the inability to field current was initiated at the start of 1991 with the inaugural
technologies. In addition, the DoD in general no meeting of the Project Support Environment
longer is a major factor in the marketplace and cannot Standards Working Group (PSESWG - pronounced
dictate what it wants or needs. The fact that the "peace-wig'). As with all of the NGCR working
defense budget is shrinking means that the Navy can groups, this is a joint industry/academia/government
no longer afford to go it alone and instead needs to group of technologists with backgrounds in the
leverage off of the commercial marketplace. requirements for and issues regarding PSEs. This

Navy-led group is committed to the identification of
The objective of the NGCR program is to restructure PSE interface standards in the form of a military
the Navys approach to acquisition of standard standard, with an accompanying military handbook, by
computing resources to take better advantage of 1998.
commercial advances and investments. It is expected
that this new approach will result in: APPROACH

reduced production costs (through larger Some of the approach taken by the PSESWG is
quantity buys) dictated by the NGCR program. Other aspects are

driven by the necessities of the PSE area. The
reduced operation and maintenance costs following are the key elements of the PSESWG

approach.
avoidance of replication of Navy RDT&E

costs (for separate projects to i. Joint industry/academia/government working
develop similar computing group
capabilities) and

All of the NGCR standardization efforts are
more effective system integration. accomplished by working groups with strong

industrial, academic and government participation.
The proposed new approach is an open systems The PSESWG is well-balanced, including members
approach based on the establishment of commercially- from the research community as well as the PSE user
based interface standards in six areas: multisystem community. It draws heavily on industry expertise as
interconnects, multiprocessor interconnects, operating well as that available from all facets of the
systems, database management systems, graphics government. All three services, the federally-funded
standards, and project support environments. This research and development centers, and the National
open systems approach is ccnsistent with the trend Institute of Standards and Technology (NIST) have
throughout the industry. been represented at meetings. This balance provides

technological strength while assuring the group that
The NGCR interface standards will be based on there is a souad balance between the perceived Navy
existing industry standards with multi-vendor support. requirements and the directions in which industry is
In cases where existing industry standards do not fully heading.
meet Navy needs, the approach is to further enhance
the existing standards jointly with industry. This will
assure the Navy of a widely-accepted set of
commercially-based interface standards.

161 1lth Annual National Conference on Ada Technology 1993

2. Standardization on interfaces, not products interfaces needed to support PSEs. The final PSE
standard is expected to refer to new and existing

One cf the keyys to the NGCR program is to get away environment interface standards and to be usable in
from standardization on products and to move the procurement of Navy (and other) systems in 1998.
towards open systems. To achieve this means that the The initial focus of the PSESWG is on identifying
emphasis must be on interfaces, services, and those areas of support environments that should have
protocols, not specific vendor implementations, even if standardized interfaces and for which industry-
those implementations have been created according to accepted interface standards can be available within
Navy specifications. There are plans to maintain the project's time frame.
Certified Product Lists for some of the NGCR
standards, and it may be appropriate at times for the 4. PSESWG organization
Navy to make large procurements of products that
meet the standards. However, the important thing will The PSESWG has been organized into subgroups and
always be the interfaces rather than the prodacts. In teams. The subgroups are: Reference Models,
this way the Nary can enjoy the benefits of new Available Technology, and Approach. The Reference
technology and increased interoperability of it Models Subgroup is working in cooperation with the
systems. NIST Integrated Software Engineering Environments

(ISEE) effort to produce a full environment reference
This general NGCR principle applies to the PSE model. PSESWG intends to use the model for
effort as well. It is sometimes difficult for PSE users to identifying PSE interface requirements and describing
think of their systems in terms of the interfaces PSE technology. The Available Technology Subgroup
between the components. But doing so is key to being is collecting and reviewing descriptions of existii-.g
able to include the best of the available tools in Navy environment interface technologies. The Approach
project PSEs and to achieve productive integration of Subgroup is planning the organizaticn and operation
the PSE components, even when they are from a of PSESWG, including procedures for the selection of
variety of vendors. h-seline standards.

3. Selection of existing industry standards The PSESWG has recently organized teams which are
more focused upon standard production and specific

Another emphasis in the NGCR program is on the technology areas. (PSESWG members generally
ability of the Navy to become a part of the industry participate on one subgroup and one team.) The
marketplace, thus being able to take advantage of initial teams are Data Interfaces, Framework, and
industry innovations and advances in technology. To Standard and Handbook Writing. The Data
achieve this, the program focuses on the selection of Interfaces Team is tasked with investigating the data
existing industry standards whenever possible. We will interchange technology area and its subareas,
ofteo find that existing industry standards do not quite producing an interface requirements document for the
providt, al! of the features required by the Navy, so it technology, and producing a list of candidates for
is rommon for the working groups to become active in selection as part of the developing standard. The
the industry organization responsible for a standard Framework Team has tasks similar to those of the
that has been selected. If there is a firm requirement Data Interfaces Team for the framework technology
for an interface for which no viable industry standard area. The Standard and Handbook Writing Team is
can be found, the working group will decide whether tasked with actually writing the draft military standard
the need is strong enough to try to find industry and draft military handbook.
interest in converging on such a standard. Only as a
last resort will a working group create its own unique 5. PSESWG Standard
interface; it will often be preferable to simply defer
the requirement antil an industry standard emerges. The Proje.ct Support Environment Interface (PSEI)

standard will not define standard tools or tool sets for
For the PSESWG this ; even more straightfoiward use in Navy system development. Instead, the focus is
than for the other groups. There is most often little to on tool integration mechanisms (including
distinguish a DoD PSE from that required in any frameworks), data exchange mechanisms, and the
other setting. Small parts (e.g., the requirements to logical contents of project data repositories. An
support Ada) may be different, but they do not affect integrated (harmonized) set of environment interface
the essential nature of a PSE nor most of the standards is important in the success of NGCR.

11th Annual National Conference on Ada Technology 1993 162

//

I
Technically, the adoption of standards for PSE Description
interfaces, services, and protocols will provide a means Software i
for better integration within a PSE and better Engineering
interaction between different PSE implementations. Time)
Procurement of PSEs will be aided by making their Data Repository I
specification easier and by lowering costs for comimon Security Services
PSE components.

PROGRESS AND ACCGMPLISIMR
recNTr

Before it is possible to select interface standards, it is
PSESWG effort to-date has focussed on three main first necessary to understand all of the interface areas I
products : the Available Technology Report, the PSE for which it might be beneficial to identify standards.
Reference Model, and the initial selection of some To do this requires a thorough understanding of PSEs,
PSE-related standards. both as they exist in the current state-of-the-practice

and as they are expected to exist in the future
Available Techno.JQ• Repodr timeframe of the military standard. The approach

PSESWG has taken to this problem is to derive a
This report is a compendium of technologies that are reference model for a full environment, as no generic "
available today that are believed to have relevance to one, existed at the initiation of the PSESWG effort.
the PSESWG effort. Most of the entries describe This reference model has been based on the work of
interface standards, both recognized and de facto, the European Computer Manufacturers' Association
although a few describe products that appear to (ECMA) and NIST, which resulted in the Reference I
address aspects of interfaces that go beyond the Model for Frawork of Software Enineering
services provided by existing standards or interface Environments t. These groups have contributed to
areas of interest for which no standards are known. the PSESWG model. Material has also been borrowed
The technologies de cribed are presented in the from the POSIX P10T.0 Guide to the POSIX Open
following categories': System Environmenti[2. The remainder of the

reference model originated with the members of the
Task Management Services PSESWG Reference Model Subgroup, making use of
User Interface Services inputs from other organizations to the greatest extent
Operating Systems Services possible.
Network ServicesI
Framework Services The PSESWG Reference Model provides a catalogue
Data Integration Services of services that covers the functionality expected of a
(including General fully populated PSE. These services are divided, at a i

Administration, high level, into those that are part of the framework
Commerce, and and those that are directly accessed by the end-user.
Transportation The Framework Services, most of which are taken

- Documentation from either the NIST/ECMA reference model or the
Electronic Design POSIX model, are categorized3 by:
Graphics
Hardware Design Operating System Services
Interface Object Management Services

Description Policy Enforcement Services
Product Process Management Services

Communication Services
1 All PSESWG documents described in this report are User Interface Services
available by contacting the authors. User Command Interface Services
2 The reader will note that this list of categories is not Network Services
completely compatible with the categories in the
following section from the Reference Model. This was 3 As of this writing, the reference model has not been
not unexpected, as the two pieces of work proceeded completed. Therefore, this list is from version 0.8 and I
in parallel, and the categories will be reconciled when some anticipated changes for version 1.0 and is subject
both documents are mature. to change. I

63 11th Annual National Conference on Ada Technology 1993 I
! /

which "obvious" standards existed, thus making the
The End-user Services are categorized by: choice fairly simple.

Technical Engineering Services The initial set of standards recommended for inclusion
System Engineering Services in the draft PSEI standard and the inierface areas they
Software Engineering Services address are:
Life-Cycle Process Engineering

Services POSIX.1 and POSIX.2 (operating system)
X-Windows (user interface protocols; the

Technical Management Services decision on a toolkit was deferred for
Configuration Management Services now)
Reuse Management Service PHIGS (graphics)
Metrics Services GOSHP (networks)

Projcct Management Services This set of initial selections is being published as a
Planning Service laboratory technical report and will be widely
Scheduling Service distributed throughout the Navy and to all members of
Estimation Service PSESWG and other interested DoD agencies. Thesc
Analysis Service selections are the first increment for the eventuc!
Tracking Service PSESWG military standard, and they will be available
Presentation Service for anyone's use. They are documented in "Toward a

MIL STD and MIL-HDBK for Project Support
Support Services Environment Interfaces."

Common Support Services
Publishing Service PLANS
Presentation Preparation Service
User Commumication Services The target date for the PSESWG standard is 1998.
Administration Services The initial selections of the whole group have been

followed by the concentrated work of the Framework
Once version 1.0 of the reference model has been and Dama interfaces Teams to more thoroughly
published (February 1993), the nexA step wif! be to use explore these two areas, coming up with ways to use
it to identify the interfaces that are required by all of the reference model tit determine the interfaces that
these services. That list of interfaces will be culled are of interest. Each of these groups is charged with:
down to those interfaces for which standardization is
likely to have a benefit. This list of target interfaces . dentifying the interface areas to be
will then be. prioritized and pursued for the remainder addressed
of the duration of the PSESWG.

* formulating requirements for thiem
Initial Selectionof 2akarnb

. identifying viable candidates for them
Because there are so v~ry many PSE interfaces for
which standardization might be of interest, it was felt . and conducting an in-depth evaluation
that some sort of start nIeeded to be made on them, process to determine the best
despite the fact that the reference model was not yet interface standard to select for each.
ready. It was agreed that there are a number of basic
"platform" interfaces thai are provided by existing These selections will be reviewed and concurred with
popular standards that cculd be easily selected without by the whole PSESWG and then are subject to the
any detriment to the likel!. future PSESWG selections, approval of the NGCR program office. A military
These are standards for suach things as operating standard with an accompanying military handbook will
system and network intertaces, which do not heavily be formulated and expanded as each selection is made
influence the characteristics that distinguish one full and approved, resulting in a formal MIL-STD and
PSE from another. The PSESWG only considered MIL-HDBK that -will be submitted for formal tri-
making these early selections in interface areas for service apnroval late in 1996.

11th Annual National Conference on Ada Technology 1993 164

/

ISSUE Community Diversity I',I

There are many issues that need to be addressed in The environments community is very diverse; it could
the course of such an ambitious undertking as the even be said to be in a state of upheaval. Being a very
PSESWG standard. Here are a few that are likely to young community (generally less than 15 years), thereI
be of interest to anyone following this work. is little agreement on definition of terms. The;e is

even a lack of consensus on the definition of what
Ada encompasses an environment or what its predominant

components are (or should be). There are many U
The NGCR program is committed to lda. All of the relevant standardization efforts, but few have been
application program interfaces (APIs) that are originated by the. environments community itself.
selected are expected to be provided with Ada There is a distinct lack of coordination, which is I
language bindings. However, the reality of the compounded by the fact that researchers from
marketplace is that there are few PSEs in existence disciplines other than software engineering (e.g.,
today that rely solely on Ada interfaces of any kind, CAD, manufacturing engineering, and concurrent
and there are even fewer bona fide standardization engineering) are converging on similar ideas without
efforts that put a significant emphasis on Ada. Thus seeming to realize the work that the software
there are at times going to be conflicts between the engineering community has already done. An example
desire to support Ada and the desire to adopt industry of the diversity is found in the use of languages, where
standards. DoD -related experimentation and implementations

often make use of Ada, but industry makes extensive
In the case of the PSESWG this apparent conflict use of 'C (including further divergence into new I
needs to be further exploi ed. On the one hand, the variations, such as C+ +), while the academic
PSESWG must clearly support the functioning of tools kiowledge-based community often goes for LISP. In
intended to support the development and maintenance order for real progress to be made, especially in
of Ada artifacts; these include, for example, compilers, directions that will make interface standards possible
linkers, program libraries, debuggers, and nrogram and useful, such efforts need to come together and
design language (PDL) tools. But it is not necessarily approach the problem in a coordinated, cooperative
true that all tools that support the development and manner. It is hoped that one effect of the PSESWG I
maintenance of Ada artifacts must themselves be reference model work will be to provide a backdrop
written in Ada or dependent on Ada bindings for PSE against which such cooperation can take shape.
interfaces. On the other hand, examination of the _

marketplace indicates that the majority of work and Prefilin
products available (including the standards produced
by accredited organizations) do not often provide Ada Standa..ds often have options associated with them. It
bindings for their interface standards. is also possible that, when combining more than one

standard in an effort to satisfy the needs of a whole
This has put the NGCR program in an awkwara system, there will be slight incompatibilities betweeri
position. While it is committed to Ada, it is a.lso some of the standards. These incompatibilities must I
committed to helping the Navy become active be addressed to make the suite work together. The
participants in the PSE marketplace, which requires process of examining the individual standards in a
adopting industry standards that are more often in C. suite with regard to their interactions and
Thus the PSESWG (and NGCR program in general) interdependencies and reconciling any differences is
have had to accept that both Ada and 'C language called profiling. Everyone who has ever designed and
bindings will be important and will need to be implemented a system based on the combination of
supported by the interface standards that are chosen, two or more standards has created at least an implicit U

profile, but the explicit job of combinin;, several
standards and deciding the necessary rtconciliations
formally is a fairly new activity, and little is really I

4 APIs are a subset of all possible interfaces: all APIs known about how to do it.
are interfaces, bet there are other kinds of interfaces
that do not require the procedural syntax of a The PSESWG standard will be such a profile, as it will
programming language and so are not provided as cover many different interface areas and will cite rrany l
APIs. diverse interface standards. Thus the issue of profiling

5 11th Annual National Cor'ference on Ada Technology 1993 I

• / /

/k

will be a significant one for the PSE standard. T-.rec
are likely to be few obvious prob!= s with the few The PSESWG can expect to find itself in all three of
standards that have aL eady been selected, as thoy tbhse situations at one time or another in the near
covcr rather distinct areas. But even with these there future. When 't does, there are several options that
are considerations of optiow to include or exclude and can be considei ed:
parameter ranges to determine. And, since both
POSIX and GOSIP have their own ideas about such Decide: If the standards choices are there
things as titae, it will be necessary to be sure that these and the evaluation can be performed with
notions con be compatibly profiled. As the number of satisfactory results, then making the
standards in the PSESWG suite grows, addressing sdection will help the incremental
these compatibilities will become increasingly difficult. adveacement of the standard
It may well prove to be in the best interest of
PSESWG to wo;k with other standards groups whose . Defer the decision: If there is still time (as is
goals are to create similar profiles of standards that the cast right now, for example, with
are of mutual interest. choosing a windowing toolkit), it may be

most prudent to simply sit out and wait a
Contentious Interface Areas while for the industry aad the marketplace

to sort themselves out. A lot can change in a
There are a few ihterface areas that were fairly simple year or two, and waiting is likely to be
for the PSESWG to address. Most of the rest will be preferable to selecting one that turns out to
much more diffi-cult. There are at least three kinds of be out of favor in a couple of years.
problems that can arise in trying to select one
standard for each interface area: . Conduct further analysis: If things seem just

too confused or overlapping, it might be best
1. Sometimes the easiest situation may be wlen there to find other ways to analyze the area or
are two or more standards that clearly cover the same other angles to take on 'he requirements to
services and functionality. Then a fairly straight- make them more suitable to making a
forward evaluation process will result iL determining selection. Perhaps some essential
one to be technically and progrtmmatically superior. distinguishing characteristic between some
This is most likcly tc happen in Ln interface arca that of the available candidates was missed in the
is well-understood and for which products lbave existed development of the requirements. If that
for some time. element can be discovered and included in

the evaluation process, it may become more
2. In other sitoations there will be scveral chcices, but clear what Omice to make.
they seem to generaily roam all around the same
territory without bzing clearly comparable or, at times, Stir the pot: In some cases, what is needed is
dearly distinguishable. Included in this category are some pro-active partidpation in the
those situations in which thei€ is a great deal of standards community. If things are not
diversity and the marketplace has yet to estabiish any gelling in industry, perhaps some attempts to
clear trend. This is most Likely to happen in an get important groups talking with one
interface area that is new but has quickly become very another or listening to the
popular, such as has happened in the windowing arena government's/user's needs will help to break
in the last few years. the logjam and get the necessary

cooperation or attention to the matter
3. In yet other situations, there may be one or more moving.
choices, but none of them seems to do the whole job
well. It is possible in this situation to find that two or
more of the possible choices complement one another
in such a way that choosing them both to .rupport Despite all of the efforts that can be made to address
distinct parts of the interface area would be scnible, the selection of standards in all of the interface areas
This is most likely to happen in an interface area that that are of interest, the PSESWG will intvitably
is being researched or slowly explored in other ways, encounter some interface areas for which there are
but for which no consensus answers of what's right or simply no standards, despite the apparent PSESWG
works have emerged. desires and requirements for them. In this case, some

11th Annual National Conference on Ada Technology 1993 166

-,

hard choices will have to be made between at least standards will be more readily available, more
three possible alternatives: technologically advanced, and more easily integrated

together. The recommendations from a reportP] on
1. It should first be carefully considered whether or the Computer-Aided Software Engineering (CASE)
not the requirement that is not being met is real. The tool marketplace included a suggestion that it was I
fact that there is no standards activity in the area may important "to gain compatibility among platform

be an indication either that industry does not consider vendors a, the environment level" and to "drive
it to be a problem or they are content with current commercial standards - do no! invent anything new if
(non-standard) solutions. Re-examination of such a there is a commercial alternative." These are the
requirement could result in the PSESWG dropping objectives of the PSESWG.
the requirement (or at least admitting that reality
suggests being willing to defer it significantly). If such The experiences of the other NGCR working groups I
re-examination confirms the importance of the also indicate that this program is moving in the right
requirement, then other approaches can b.j engaged. direction. Two other standards - SAFENET II (based

largely on FDDI) for networks and the backplane I
2. For an important requirement that cannot be standard (based largely on FutureBus +) - have been
deferred, it is possible to try to drum up industry well received in the Navy and elsewhere. Even before
support and enthusiasm for addressing it. This is the their final formal approval they were being followed
first choice of the NGCR program, since the desire is by Navy projects, indicating a wide-spread interest in
to adopt industry standards. It may be that the the anticipated benefits and a real willingness to give
PSESWG will have to put some resources (e.g., thisapproach a try.
providing a working group chair or doing the 1
paperwoik necessary to get a newv group or work item The PSESWG reference model has also been well-
approved) into getting something rolling, but that received so far. It is hoped that it will help to provide a
would be far preferable to the only remaining road-map that the entire PSE industry can accept and1
alternative, that will help to sort out the difficulties in realizing

good integrated environments tlat are built from a
3. If by some chance the PSESWG is faced with a truly variety of vendor products.
urgent requirement for which no interest can be found
in industry, it may be left with no choice but to REFEREN!EC
attempt to provide its own unilateral interface for the
area. This could be done in parallel with trying to [11 Reference Model for Frameworks oJ Software
drum up industry support, so that the interface Engineering Environments, NIST Special Publication
developed could be provided to the new group as a 500-201. Computer Systems Laboratory, National
strawman with which they can start their work. This is Institute of Standards and Technology, Gaithersburg,I
the choice of absolute last resort, and it is not MD 20899; available from the Superintendent of
expected that PSESWG is likely to be forced to this. Documents, U.S. Government Printing Office,

Washington, D.C. 20402. Also available as Technical
CONCLUSION Report TR/55, 2nd Edition, of the European

Computer Manufacturers' Association (ECMA).
The PSESWG is following the general tenets of the
NGCR program in selecting a set of PSE interface [2] Draft Guide to the POSIX Open System
standards. An initial selection of a few standards has Environment (P1003.0), Technical Committee on
been made and documented. There is no direct Operating Systems and Application Environments of -
PSESWG experience with the application of these the IEEE Computer Society, 345 East 47th Street, -
standards, although support environments can be New York, NY 10017. \
found today that make use of products that conform to
the selected standards or others very similar to them. 13] CASE Vendors'Handbook, Dataquest, 1290 Ridder

Park Drive, San Jose, CA 95131-2398. 23 July 1991. U
This program is consistent with a significant move
throughout the industry to open systems and to the
use of industry interface standards. The expected
benefits include time and cost savings and increased
quality, because usable products that conform to the

I
1lth Annual National Conference on Ada Technology 1993

Ms. Oberndorf graduated from O:cgon State
Uniersity, receiving a Bachelor of Science degree in
Mathlraatics/Computer Science, and then attended
the University of California at San Diego, receiiAng a
Master of Science degree ln computer sc'e! ce. Sho
has worked for the Navy ever since, first at the Naval
Ocean Systems C-.n.er in San Diego, where she
helped lead the original environments work there in
the mid-1970's. She led the team that developed the.
Common APSE (Ada Programming Suppnrt
Environment) Interface Set (CAIS-A). After movin3
to her currert location, she became involved with the
NGCR program, first cbairing the Operating Systerm
Standards Working Group. She ncw serves as thtu
civilian co-chairman for the Project Support
Environment Standards Working Group.

Dr. Schmiedekamp received his BS ard PhD degrees
from the Ut'iversity of Texas at Austin, both in
Physics. He was an Assistant Professor of Computer
Science at Drexel University in Philadelphia.
Schmiedekamp has been a Computtr Scientist at the
Navy laboratory in Warminster, PA since 1984. His
work has been primarily in the areas of software
engineering environments and staneardization. He
was a member of the NGCR Operating System
Standards Working Group where he wes editor for a
Reference Model of Real-Time Operatixg Systems.
Currently he is a nember of the NGCR Project
Support Environment Standards Wor4ing Gi oup,
where he chairs the Approach Subgroup ond the
Standards Writing Team. His research interests
include standards, reuse, matrics and
multi-criteria optimization.

LCDR Squitieri graduated from the Mrssachusetti
Institute of Technology and received a Bac&;elor of
Science degree in Mechanical Engineering. He was -
commissioned an Ensign in the United States Navy in
June 1980. After several tours and cruises, he attended
the Naval Postgraduate School in Morterey, C. and
received a Master of Science degree in Electrical
Engineering. He served his department head tour on a
west coast destroye.r and made a Western Pacific
cruise. He is currently assigned to the Navy's Next
Generation Computer Resources Program at the
Space and Naval Warfare Systems Command in
Wash;ngton, D.C. He serves as the military co-
chairman for the Projeat Support Environment
Standards Working Group.

11th Anuual National Conference on Ada Technology 1993 168

NICLS: A NATURAL IFITE!107ACE FOR A COMBINED LANGUAGE SYSTEM.

John H. Gray and James W. Hooper
Corputer Science Department

The University of Alabama in Huntsville
Huntosville, Alabama 35899

(205) 895 - 6515

features may be employed in
ABSTRACT different levels of abstraction

with consistency of syntax and
Software systems cunstructed semantics. This paper presents

during the past two decades, and an overview of the development of
in many instances in the very an Ada-based interface that
recent pact, have usually demonstrates the feasibility of
followed the traditional woftware language concepts and features
engineering life cycle approach that achieve a joint prototyping
to software development: and simulation framework.
requirements, specification,
design, code, test, and Intzrduotion
maintenance. Software developers
have usually been determined to Experience has revealed that
demonstrate all user customers do r.ot always nave a
requirements, but the traditional clear understanding of exactly
life cycle approach has often what they really want their
hampered this desire. Rapid software to do. They know their
prototyping has been devised to application, but they cannot
facilitate the process of always describe the details of
software development. Since the their problers to outsiders.
first symposium in 1982, a Even if care is taken, the
variety of rapid prototyping communication between a software
approaches have been developed. enginee:r and the customer can
One of these approaches involves lead to misunderstandings23 .
high-level languages designed Misunderstandings can result in
especially for prototyping. It omitted or overlooked
has also become increasingly requirements, which will
clear that discrete simulation propagate throughout the software
can be used to good advantage to development cycle. To correct
augment the activities in the this situation, the system
traditional life cycle requirements will have to be
development process.. As software modif ied, the software
system realizations transition specification will have to be
over time, there is the need to changed to reflect the new s

achieve prototype changes easily requirements, the design
and naturally, maintaining a probably will have to be
consistent view of the system, modified, the code may have to
and working with a language whose change ::o reflect arty design

169 11th Annual National Conference on Ada Technology 1993

-~~~_ .17~ i

fl changes, and any changed code simulation, but the main
will have to be retested. These intention of each is discernableD setbacks can create schedule within the software engineering
delays. Therefore, good life cycle"8 . In order to provide
communication, particularly early a more complete understanding of
in the software life cycle, is each technique, b r iefE vitally important to the descriptions of both are prov'ide
development of a functionally below.
appropriate software system.

Discrete Simulation
a Sometimes newly discovered

requirements conflict with As digital computers becameapreviously existing requirements, commercially available in the
thus rendering the implemented 1950s and 1960s, it was
system useless. Discrepancies recognized that- they possessed a
between what customers want and valuable capability of evaluating

S what developers provide may cost simulation. models as discrete
as much as 100 times more than if approximations of physical
errors or omissions had not been systems being studied. BecauseImade in defining the requirements time in the physical system could
during the analysis step'. To be represented as a series of
facilitate data flow and discrete changes, these
communication during the early simulation models took on theU steps of the traditional software name "discrete event models",,
life cycle, additional and the simulation techniques
development techniques have been used to computerize thesefl proposed. Two such techniques discrete models became known as
are discrete simulation and "discrete event simulation~".
prototyping. Over the last three decades,

discrete event simulationUBoth discrete simulation and techniques have become an
prototyping can be used to mirror integral part of some so-called
components of a "real system" "high level" programming
relative to time passagel, languages. From the simulation
synchronization, communication, standpoint, these languages fAall1
and the use of shared system into two basic categories:
resources, while at the same time general-purpose programming

U abstracting away unnecessary lana'iages and special- purpose
detail. However, they differ in simulation languages. The
their representations o. a special-purpose simulationI software system. Discrete languages have developed around
simulation produces more abstract four discrete 'time control
representations of a system than strategies: event scheduling,I prototV9i;"q, especially with activity scanning, the
rt-spact to time passage. three-phrase approach, and
Discrete simulation models time process interaction. The time
passage usinc, a simulation clock, control strategies are foundedI Prototyping implements time upon the fundamental concepts of
passage using a real time clock, conditional and unconditional
There is an area of uncertainty events. Unconditional events are
at the boundary between executed by sequencing events ->

prototyping and discrete according to an agenda that is

111th Annual National Conference on Ada Technology 1993 17

solely time dependent. future event list, as the name
Conditional events are executed implies, contains event notices
by sequencing events to an agenda for activities scheduled to be
that is not solely dependent on executed. at some future time.
time, but is also dependent on The current event list, as its
othpr imposed conditions (such name implies, contains event
as, is the CPU busy?)10. notices for activities to be

executed at the current
Each discrete time control simulation clock time, if their

strategy determines how a modeler conditions are met. .Upon
must view a system that is to be simulation time update, all
modeled by providing alternative activities scheduled for current
world views. The term "world time are removed from the future
view" is used to describe the event list and placed on. the
perspective of a system that is current event list. The current
assumed when Using a given event list is scanned to
language. Each world view has determine if the condition
demonstrated itself as a valuable segment of each entry can be
simulation approach, and in many satisfied. Those entries whose
cases has led to the development condition segments c-an be
of new languages. However, the satisfied, proceed by executing
world view that has shown promise the accompanying action segment.
recently is the process An activity progresses through as
interaction approach.. many steps as time and condition

segments dictate. When an entity
The process interaction cannot continue to advance

approach has characteristics of through the sequence of
both event scheduling and activities, the scan of the
activity scanning. Any current event list can proceed
simulation language designed and the simulation clock is
around the process interaction advanced.
approach allows the user to
concentrate on a single entity Although the process
(such as a customer) and the interaction strategy was accepted
sequence of logical steps as one of the best frameworks for
involving the entity'1. This building simulation models, it
sequence of steps, or activities, was not the simplest to code.
is commonly known as a .process. Nevertheless, this approach was
Each step of a process consists implemented early in the history
of a condition segment and an of programming languages via GPSS
action segment, which are in 1961.
characteristics of the activity
scanning approach. The The current trends reflect a
successful execution of the quantum increase in tools and
condition segment dictates methods for simulation, and all
whether the action segment is indications are that the momentum
executed. is still increasing. Due to the

close conceptual conformity of a
'the process interaction time process interaction model to its

control procedure implements two corresponding system, there is
event lists: a future event list every reason to expect continuing
and a current event list. The emphasis on the process

17 1 11th Annual National Conference on Ada Technology 1993

a9
interaction world view9, could be considered command

driven. Very-high-level
Roid Prototyping languages incorporate software

reusability to provide users with
It was in the decade of the a statement set that is

1980's that prototyping, in simplistic, yet powerful.
particular rapid prototyping,
received recognitior. The first The traditional life cycle
symposium on the subject was held approach did not accommodate the
in 198225. In 1983, a working evolutionary development
conference on prototyping was introduced by rapid prototyping
held in Germany which focused on capabilities 2 . However, they have
the user-oriented development of been used within alternative life
information systems. it was in cycle approaches, such as the
the development of information Spiral Approach. Very-high-
systems that rapid prototyping level languages, have assumed an
was used effectively. Since the important position within the
occurrence of these conferences, framework of software engineering
a variety of rapid prototypinc by offering features that are
approaches have developed. One uniform relative to syntax,
technique is very-high-level semantics, and "system view".
languages. The intent of very-high-level

language systems is to provide
Very-high-level languages effective means of transitioning

are a continuation of the from lower to higher fidelity
programming language evolutionary system representations, as the
process. First, there was system realization "hardens"
machine language whicn evolved throughout its development' 5 . Two
into assembly language. Assembly successful examples of very-high-
language evolved into programming level language prototyping are
languages, which provided more JADE2 6 and BPL1.
simplicity and flexibility in the
programming environment. Boehm, Gray, and Seewaldt4
Programming languages offered made a study of projects that
users the ability to potentially proved to be well suited to the
code several assembly language use of software prototypes.
statements under the guise of a Their research revealed that
single programming language systems constructed using
statement. This provided a more prototypes performed equivalently
readable and logically shorter to. those systems constructed by
programs. Very-high-level the more traditional life cycle
languages take this concept one techniques. Even more important,
step further. Semantically their research revealed that
related programming statements approximately 40% fewer lines of
are gathered together, perhaps in code were written by those who
the form of a procedure or used prototypes to construct
function, and are represented by their systems. As a result,
a single very-high-level rapid prototyping has proved its
programming language statement, usefulness as a software
thus, further reducing the development tool and is an area
logical size of a program and of increasing importance and
elevating it to a level that research.

11th Annual National Conference on Ada Technology 1993 i"

Thl.e enefits of a Combination As a development tool,
RaTid prototying/Discrete discrete simulation can be used
Simulation Language System early in the life of a software

system. To assist with the
As can be determined from analysis of such a software

the discussion above, both system, a discrete simulation
discrete simulation and rapid Model can be developed. The user
prototyping have made a can repeatedly evaluate the
significant impact on software discrete simulation model with
engineering and each has been various data sets in order to
successfully established as a analyze potential designs. If
useful life cycle tool. Discrete input data is plentiful,
simulation has had a tremendous different proposed system designs
influence on the development of can be evaluated in order to
numerous computer programming determine the most appropriate
languages. Rapid prototyping has one.
had an influence by providing an
alternative development Even when input data is
technique. With these two widely somewhat sketchy, discrete
used and repeatedly proven simulation concepts can still be
development tools available, can used to aid in the analysis of a
an advantage be gained by proposed system. Actual system
combining the two into a joint data is always preferred, since
software development apprcach? it provides realism to a
If so, what are the advantages simulation; however, real system
and disadvantages of the joint data is quite often too expensive
development approach? The answer or perhaps impossible to obtain.
to these questions is found by In this case practicality is the
examining the advantages and rule of thumb. Over the years it
disadvantages of each tool has been shown that simulation
individually. Any specific data is usually less costly to
advantage gained by a merger will obtain than real system data.
be derived from the individual Simulation data can be generated
components of the union. from a variety of existing and
Therefore, our attention is well proven random number
directed to the specific generators. If system analysis
advantages and disadvantages of can identify a probability
discrete simulation and of-rapicl distribution, then any necessary
prototyping. system data can be generated from

this distribution instead of
Advantaaes and DisadvantaQes of using -costly data gathering
Discrete Simulation techniques.

The concept of discrete Generall 1 , when developing a
simulation has been utilized for software m~del a software
many years and the primary engineer can consider the model
advantages and disadvantages are from two fundamental simulation
well defined. Schmidt and approaches: analytical and
Taylor24- and Banks and Carson' as numerical. Analytical simulation
well as others have outlined and requires good insight and
dncumented them. understanding of the mechanics of

mathematics and deductive

173 11th Annual National Conference on Ada Technology 1993

reasoning. But being well versed there are also some side effects
in analytical methods may not be from the use of simulation that
good enough. Many systems are to are not desirable. Simulation
large and complex that models developed for digital
mathematical models are computers may be costly for

impactcalto manipulate and several reasons. Large, complex
results are extremely difficult simulation models can requi.re a,
to deduce. On the other, hand, good deal of time to construct
numerical discrete simulation and validate. The interactions
concepts require computational that may take place within the
procedures which are executed on model can be complicated and
computers rather than solved difficult to define. In order to
manually. The executed perfect a model, numerous
procedures produce a system computer runs are required.
history consisting of data which However, this disadvantage is
can be examined to fii~d expected made tolerable through the use of
results and to discover the special purpose simulation
unxetdanomal~ies. Computers languages and constantly

can also be used to efficiently increasing computing capability.
manipulate large amounts of
system data used as inputs or 1With the improved special
generated as outputs. This fact purpose simulation languages and
alone usually encourages many computer facilities, users can
more users of numerical become very familiar with
simulation methods over the computing techniques, and may
analytical methods. In addition, ignore their mathematical
analytical models usually require training. This situation can
several simnplifying assumptions lead to bad choices for problem
to make them mathematically solutions. Sometimes users may
manageable. Discrete numerical over look an obvious mathematical
models do not have this solutioit and select a numerical
restriction. In many problem solution instead. This error can
situations analytical models can pro, e to becostly in both time
evaluate only a limited number of and money.
system performance measures.
Software engineers implementing Advantaggs and Disadvantages of
discrete simulation models can Rapid Prototvning
approximate any conceived
performance measure by using Rapid prototyping has been
generated simulation data. in use by software developers
Therefore, the ensuing cost of only about half as long as
acquiring real data for a discrete simulation. Therefore,
proposed system, or the the primary advantages and
difficulty in defining a suitable disadvantages of rapid
analytical model, often elevates prototyping are not as well
discrete simulation as the only documented as those of discrete
practical solutic~n to the simulation. However, Connell and
problem. Shafer7 , and others provide

insight into this area. we
Even though simulation summarize these advantages and

during software development is disadvantages in the following
appealing in numerous situations, paragraphs.

11th Annual National Conference on Ada Technology 1993 174

As a communication tool, understanding gained in
rapid prototyping has constructing a porototype
demonstrated itself to be helpful. transfers into an overall better
and sometimes cost effective in system. In terms of development
many small and large projects. cost and development time, it
Consider the situation involving appears to be more effective if
an incomplete requirements changes to system ambiguities
document. It is very difficult occur early in the . software
to achieve coordination between development, rather than later
the design specification and all during the maintenance phase
user requirements for a complex after the software has been
system until the user has released. Historically, the
witnessed at the minimum a functionality of a system is
partial implementation. When a changed by users late in the
customer Attempts to relate development cycle because
requirements to a system software engineers usually do not
engineer, uncertainty exists greatly involve users during the
about what is needed in the pre-design phases. As a result,
software. Users are busy, they a user's perspective sometimes
forget important details, or they turns out to be different than
really just aren't interested, the design specification in the
Sometimes, not everyomne who reality of a visible, working
should be involved in system.
requirements definition is
involved and very important However, using rapid
criteria is lost'. in this case prototyping, the opportunity to
the software requirements may be make functional modifications as
considrda"ihls" but not a result of changes in the
necessarily a complete wish requirements can come at a much
list23. At other times, the earlier time. Users have an
customer may have a basic opportunity to view a working
understanding of what is needed model prior to test and
in the desired software, but is maintenance. Therefore, an
uncertain if it is feasible to advantage of rapid prototyping is
develop it. With rapid accommodating new or unexpected
prototyping, sections of any customer requirements early in
proposed system can be the development cycle rather than
represented and used to determine later during the tes~t and/or
the feasibility or desirability maintenance stages.
of the customer's perceived
requirements. The requirements A direct consequence of
can be evaluated before the involving the user early in the
design is finalized. Formal software development process is
specifications may never be the cost savings that can occur
documented as in the traditional in the maintenance phase of
life cycle approach; however, if software development.
specifications are desired. the Traditionally, using the software
final prototype itself may b~e development life cycle, most of
perceived as the specifications the cost of software is not
for the software22 incurred during the development

effort or during the coding
The experience and effort, but rather during

175 11th Annual National Conference on Ada Technology 1993

7

software maintenance7 . It is a relatively new technique for
fact that software engineers make software development, not all
development mistakes during the software engineers feel
early phases of the software life comfortable with it. Although a
cycle. Some of these errors software system may be developed
surface during the test phase, by using rapid prototyping
and others will go undetected techniques, maintenance engineers
until after the software is or even software designers may be
operational. In the traditional more accustomed to the
life cycle approach a great traditional life cycle approach.
portion of the development effort A change in approach may be
is directed to correcting perceived as criticism of their
mistakes that propagate through professional ability and they may
the early phases of software become uncomfortable with the
development into software test situation or possibly even
and maintenance 7. By using rapid hostile. There is always an
prototyping, cost reductions in inclination to reject techniques
the test and maintenance phases that are not familiar, and tnus
occur because software delay their advancement.
engineering errors have a greater
opportunity to be caught by the In the same vein there is a
users before the test phase shortage of trained prototypers
begins. Therefore, fewer and maintainers of prototype
modifications will be required systems. Compounding the
after software delivery, problem, there has been little

opportunity for training
An additional advantage prototypers or introducing

gained from rapid prototyping is developers to this newer way of
the ability to discard the thinking. Companies that develop
prototype of an infeasible or prototyping tools usually offer
unworkable system at a relatively training, but a general approach
small loss compared to the to rapid prototyping and rapid
devastating loss from discarding prototyping methodologies has
a system late during the test or been lacking.
maintenance phase of the
classical software life cycle. A A Merger of Rapid Protgtvin_ and
software system that survives the Discrete Simulation
inspection of the user through a
rapid prototype can only increase With rapid prototyping and
the user's satisfaction with the discrete simulation working
final product, thus providing a together in a combined language
measure of quality control and system, benefits emerge in all
productivity improvements in the aspects of the software life
development phases beyond the cycle. To better understand how
analysis prototype design. these benefits relate to the

traditional software cycle,
One disadvantage with using consider the software life cycle

rapid prctotyping is not found in to consist ot the following six
the technical approach phases:
implemented by the users, but
rather in the way users perceive (1) requirements analysis
it. Since rapid prototyping is a (2) system design

11th Annual National Conference on Ada Technology 1993 176

(3) high-level software design identify h*Igh activity modules
(4) implementation that 'require special attention
(5) integration/testing from the developer. In either
(6) operation/maintenance case simulation activities can

again be used to expose software
In phase one, during the flaws in order to avoid potential

early stages of the software bottlenecks during software
development, it is very prudent operation. Phase three also
to determine the feasibility and provides an excellent opportunity
practicality of individual for usage of prototyping
requirements. To assist in this techniques, to resolve issues
operation, a simulation can be concerning distributed processing
developed that can examine capabilities.
software throughput data and
determine if the volume of data After the software system
defined in a requirement is transforms from software design
reasonable. It a sufficient into an implementation,
amount of real data is not prototyping and simulation can
available to the simulation, still be valuable tools.
random number gensrators can be Software engineers can build
used to supply any amount of data prototype modules to serve as
necessary to test these drivers and stubs during
requirements. It is also integration a~-,I testing (phase
valuable to inspect some five). In phas-e six, simulation
potential man/machine interface and prototyping can be used to I
requirements at this point. A evaluate the impact of changes to
rapid prototype can be used to working softwara prior to any
accomplish this task. using a actual change.I
very low fidelity representation
of the software's functionality, To some engineers the
plausible man/machine interfaces concepts of rapid prototyp ing and
can be constructed and examined discrete simulation are very I
for their usefulness to potential similar and may cause some

user confusion. There is18a "gray
area" at the boundary between I

During phase two, system rapid prototyping and discrete
design, assessment capability is simulation, but the main purpose
essential to proper software of each development approach is I
development. Assessment of distinguishable. Simulation
resource utilization and queue clearly has its most effective
buildup is vital to the success role in the more abstract
of phase two, Efficient use of representations of a software
system resources and data system during requirements
structures is critical to the analysis, design assessments, and
development of a usable baseline, maintenance. Prototyping has its I
Simulation techniques can be used role in the more visible aspects
to perform these assessments. of the software that occur during

system design, software design, I
In phase three, high-level and integration and testing. As

software design, proper the software transitions through
assessment can reveal the software life cycle, and the

input/output problems, as well as representations of system

177 11th Annual National Conference on Ada Technology 199-

characteristics become more (4) to select a general purpose
concrete, it may be more programming language to seive as
appropriate to use "real" time a base language as well as a
instead of simulation time. This medium in which the interface can
chang6 implies a natural flow be developed.
from simulation to prototyping
crossing each phase, yet The results of the study yielded
maintaining a consistent view of the selection of Ada as the
the software system under general purpose programming
development. By using a joint language, the Behavior
simulation/prototyping language Prototyping Language (BPL)1.12 as
system, this time flow capability the representative of rapid
can be achieved"' 8 . prototyping languages, and

Simulation and Modelling on AMa
NI CLS (SAMOA)21 as the representative of

discrete simulation languages.
To demonstrate the validit-- The basis for each of these

of a combined language system selections is outlined below.
supporting discrete simulation
within a rapid prototyping Ada as a General Purpose
environment, a study has been Proaramming LanguagLe
conducted with emphasis on
developing an interface to Although relatively new as a
discrete simulation languages and general purpose programming
rapid prototyping languages. The language, Ada has obtained a
interface was named NICLS respected following within the
(Natural Interface for a Combined software engincering community.
Language System) and is It was developed under the
pronounced "Nichlas". The leadership of the United States
purpose of the study is fourfold: Department of Defense to be used

initially within large, real time
(1) to select a discrete embedded computer systems. Ada
simulation language, which proved to be adaptable across a
possesses a set of language diversified set of applications
statements that will serve as a in both the commercial and the
representative of the discrete government communities. Ada's
simulation languages, success was due to ý its

suitability across the software
(2) to select a rapid life cycle. It possesses
prototyping language, which features designed to facilitate
possesses a set of language both classical software
statements that will serve as a engineering and rapid
representative of the rapid prototypingO. Some of these
prototyping languages, features are the more modern

software engineering princi les:
(3) to utilize the programming data abstraction, informaltion
language features of the discrete hiding, modularity, concurre cy,
simulation representative and the portability, strong typing, and
rapid prototyping representative versatile syntax. These
by means of an interface from a principles allow Ada to bridge
general purpose programming the gap between past programming
language, languages and current software

11th Annual National Conference on Ada Technology 1993 178

development methodologies. SAMA j
SAMOA was selected as thf.

representative for the discrete
BPL was selected as the simiilation languages bascd on twc i

representative of the rapid criteria: Dase language and
prototyping languages based on simulation world view.
the following criteria: language
features, proven application, and SAMOA, as the name implies,
availability of information. BPL has Ada as the base language and
offered an excellent example of a was an attempt by its developers I
very-high-level rapid prototyping to apply Ada constructs toward I
language, and it provided stable the development of a fully
guidance in the development of integrated, discrete event
the rapid prototyping features. simulation language. The design I

of SAMOA was guided by two goals:
BPL was designed to provide

language features uniform (1) limiting the number of Ada
relative to syntax, semantics and prcgramming statements a user
system view. It was purposely must knew to a Pascal equivalent
iesigned to achieve rapid subset. This could potentially I
prototyping of system b3havior by ease the transition of non-Ada I
use of abstraction, which can be programmers to an Ada-based
performed to different lev3ls language, and
with good effectl. The syntax and I
semantics of I BPL language (2) allowing users. when
statements were influenced by necessary, to have access to the
several existing languages, the full power of Ada. This provides
most influential being SETL19, the knowledgeable Ada programmer
Simscript 2O, and!Pascal. BPL is a full arsenal of Ada language
not a "strong data typing" capabilities to apply to the j
language due to the influence of problem at hand. I
set-theoretical concepts from
SETL. Rather BPL is a strong By possessing a Pascal like
object-typing language. subset, SAMOA provides a rich

p supply of known programming
BPL was designed by Dr. features to integrate with the

James W. Hooper. It was based on BPL programming features.
research performed at the
University of Alabama in SAMOA approaches discrete
Huntsville. It was developed for simulation from the process
the United States Army Ballistic interaction world view, and i
Missile Defense (BMD) Advanced demonstrates a continued trend of
Technology Center for use on increased usage of this world
their Distributed Data Processing view in discrete simulation I
Testbed. Dr. Hooper is serving languages within the United
as advisor to the NICLS research States.
effort and is available to
provide first-hand information The Guiding Principles in the
concerning the implementation of Development of NICLS
BPL. I

The guiding principles used

I
'9 11th Annual National Conference on Ada Technology 1993 I

/

during the development of NICLS aspects can be defined using
Zollow the principles o-otlined in abstract representations.
Hooper.'. Those principles are: However, unless there exists some
understandable langucge concepts, set of implementable mechanisms
understandable language syntax, corresponding to the abstract
computational/representational representations, t h e s e
power and flexibility, and abstractions will be useless. In
support for the software order for NICLS to be a viable
development piocess. Although software development tool, it
the principles discussed by must iemonstratý a useful set of
Hooper were simulation oriented, implementable mechanisms. Thus
their applicability to NICLS is there remained the task of
just as valid. identifying for NICLS these

implementable mechenisms.
The Overall ApproLch to NICLS

Some of the mechanisms can
NICLS provides a syntactic/ be easiIy identified. For

semantic approach to software example, consider "Time Passage"
development. All NICLS as the candidate for abstract
statements are syntactically representation. Time passage
identical whether they appear in from a software developer's
a simulaticn or in a rapid perspective can be envisioned as
prototype. However, their two distinct clocking mechanisms,
interpretation depends on the simulation time and real time.
semantics of the module that If simulation time is selected as
contains them. A preprocessor is the desired clock strategy, then
used to translate the NICLS the corresponding mechanism can
statements into standard Ada. be a transformation module that

operates in a simulation
A program may contain a framework (i.e., a simulation

combina'tion of NICLS and Ada clock and a future event list).
statements. The preprocessor If real time i;s chcsen as the
scans for the NICLS statements desircd clock strategy, then the
while ignoring the accompanying corresponding mechanism is a
Ada statements. It recognizes transformation module that

-__the NICLS statements because they operates in a prototyping
have an augmented Ada-like syntax framework (i.e., real time
that is distinguishable from delays).
standard Ada by the preprocesor.
Once the preprocessor has By using the time based
completed the translation transformation modules described
process, the Ada compiler above, an added bonus is
provides the run- time support. revealed. If the transformation

nodules are implemented so that
The Combined LanguaQe Features of the programming statements
NICLS composing them are identical

syntactically, and the only
Within any software difference between the simulation

development effort there exist transformation module and the
aspects that can be considered prototyping transformation module
the principal aspects of tne is the interpretation applied to
system. In many instances these the programming statements, then

11th Annual Naticnal Conference on Ada Technology 1993 180

/I

a key programming element that is must be viable programming
necessary for a clean transition statements in both simulation
from low fidelity to high languages and prototyping
fidelity is manifested. This key languages. This concept is
programming element is currently directing the U
consistency. Consistency occurs investigation leading to the
because the transformation definition of a set of
modules look the same from a transitional statements. A I
programming perspective, but the comparison for syntactic
interpretation is dependent upon uniformity is being made using
the semantics implied by the programming statements from both
implementation. This establishes SAMOA and BPL. It is our goal to
a working framework that can complete this study and have a
evolve semantically from a working version of NICLS by the
simulation framework to a end of this year.
prototyping framework.

REFERENCES
To properly use this key

programming element to its full 1. Banks, Jerry and Carson, John
potential requires that the S. 1984. Discrete-Event System
programming framework contain Simulation, Prentice-Hall, Inc.
transitional statements that Englewood Cliffs, N. J.
appear syntactically identical,
yet are translated according to 2. Belz, Frank C. 1986.
the semantics implied by the "Applyinj The Spiral Model: I
framework containing them. An Observations On Developing System
example of such a transitional Software 'In Ada", in the
statement is the DELAY N Proceedings of the 4th Annual
statement. In a simulation National Conference on Ada
framework DELAY N causes some Technology. (Atlanta, Ga. Mar
event within the simulation to be 19-20, 1986). U. S. Army
placed on the future event list. Communications-Electronics
When the simulation clock is, Command, N.J., 57-66.
updated by N time units, the
event is removed from the future 3. Boehm, Barry W. 1983.
event list and reactivated. Software Engineering Economics,
Alternatively, DELAY N in a real Prentice-Hall, Englewood Cliffs,
time framework causes some event N.J. I
to become idle until N real clock
units have elapsed, then the 4. Boehm, Barry W., Terence E.
event is reactivated. Notice Gray, Thomas Seewaldt, 1984.
that the statement, DELAY N, has "Prototyping Versus Specifying:
the same syntax for both A Multiproject Experiment", IEEE
implementations, but the Transactions on Software
interpretation is dependent upon Engineering SE-10, no. 3(May): I
the semantics of the enclosing 290-302.
framework. 5. Buhr, R., J., A., 1984.

In order for programming System Design In Ada, Prentice
statemonts like DELAY N to have Hall, Inc., Englewood Cliffs,
meaning as trarsitional N.J.
statements within NI.LS, they

I
11th Annual National Conference on Ada Technology 1993 If .

6. Carrio, Migual A. 1986. "The 13. Hoopcr J. W. 1986. "Language
Technology Life Cycle And Ada", Assessmen• Criteria For Discrete
in the Proceedings of the 4th Simulation", in the Proceedings
unnual National Conference of Ada of the 3986 Winter Simulation

Tschnology. Atlanta, Ga. Mar Conferenc.z, 404-408..
19-20, 1986). U. S. Army
Communications-Electronics 14. Hooper, J. W. 1987a.
Command, N.J., 75-22. "Software Engineering Approaches

For Discrete Simulation", in the
7. Connell, J. L. and Shafer, L. Proceedings of the 18th Annual
B. 1989. Structured Papid Conference on Modelling and
Prototyping, An Evolutionary Simulation, (Pittsburg, Pa., Apr
Approach to Software Development, 1987).
Prentice Hall, Englewood Cliffs,
N.J. 15. Hoopar, J. W. 1987b.

"Uniform Language Concepts for
8. Duncan, Arthur G. 1982. Prototyping and Simulation of
"Prototyping in Ada: A Case Software." in the Proceedings of
Stucdy", ACM Sigsoft Software the 1987 Summer Computer
Engineering Notes 7, no. 5(Dec): Simulation Conference (Montreal,
54-60. Quebec, Canada, July). SCS, San

Diego, Ca., 93-98.
9. Gray, John H., James W.
Hooper, 1987. "The Evolution Of 16. Hooper, J.W. 1987c.
Process Oriented Sim•,lation "Languages Features For Discrete
Languages", in the Proceedings of Simulation", Computer Languages
the 1987 Southeastern Computer 12, no. !: 39-46.
Simulation Conference.
(Huntsville, Alabama, Oct 19-21, 17. Hooper, J. Y.. 1988a.
1987). SCSC, San Diego, Ca. "Programming Languages." System

Modeling, N.A. Kheir, ed. Marcel
10. Hooper, J.W. 1979. Simulation Dekker, Inc., New York, N.Y.,
strategies: A Theoretical and 291-317.
Practical Investigation, A
Dissertation, University of 18. Hooper, J. W. 1988b.
Alabama, Birminqham. "Language Features For

Prototyping and Simulation
11. Hooper, J.W. 1985a. "BPL: A Support Of The Software Life
Set-Based Language for Cycle", Computer Languages.
Distributed System Prototyping.",
International Journal of Computer 19. Kennedy, K., and J. Schwartz
and Information Sciences 14, no. 1975. "An Introduction to the Set
2(Apr): 83-105. Theoretical Language SETL", Comp.

and Math. with Applications i(I):
12. Hooper, J.W., J. T. Ellis, T. 97-110.
A. Johnson, 1985b. "Distributed
Software Prototyping with ADS", 20. Kiviat, P. J., R. Villanueva,
in the Proceedings of the 8th and H. M. Markowitz 2973.
International Conference on SIMSCRIPT 11.5 Programming
Software Engineering. (London, Language, 2nd Ed., Consolidated
U. K., Aug 28-30), IEE, Los Analysis Centers, Inc., Los
Angeles, Ca. 216-223. Angeles, Ca,

11th Annual National Conference on Ada Technology 1993 182
• ,, >!." ". i_ " ' i . "." i • :

21. Lomow, G., B. Unger. 1982. Brief Bibliography
"The Process View of Simulation
in Ada." in the Proceedings of JOHN H. GRAY is employed by TE
the 1982 Winter Simulation Inc. as a senior softwa
Conference (San Diego, Ca., Dec engineer working on the Spa
6-8). IEEE, N. J., 77-86. Station Freedom project. He

currently pursuing a Ph.D.
22. McCracken, Daniel D., Mickael Computer Science at t
A. Jackson 1982. "Life Cycle University of, Alabama
Concept Considered Harmful", Huntsville.
Software Engineering Notes 7, no.
2(Apr): 29-32. Dr. JAMES W. HOOPER is current

serving as Weisberg Professor
23. Pfleeger, Shari Lawrence, Software Engineering at Marshe
1987. Software Engineering. University, Huntington, W.V.,
Macmillan Publishing Company, New leave from his position
York, N.Y. Professor of Computer Science

the University of Alabama
24. Schmidt, J. W., and R. E. Huntsville. Earlier he conduci
Taylor 1970. Simulation and simulation research as
Analysis of Industrial Systems, employee of NASA Marshall Sp;
Irwin, Homewood, Ill. Flight Center.

25. Squires, S.L., M. Branstad
and M. Zelkowitz (quest editors).

S1982. "Special Issue on Rapid
Prototyping", ACM Software

* Enginvering Notes, 7, no. 5(Dec),
1-185.

26. Unger, B., G. Birtwistle, J.
Cleary, D. Hill, G. Lomow, R.
Neal, M. Peterson, I. Witten, B.
Wyvill, 1984. "JADE: A
Simulation and Software
Prototyping Environment", in
Simulation in Strongly Typed
Languages: Ada, Pascal, Simula
... , Society for Computer
Simulation, San Diego, Ca.,
77-83.

183 11th Annual National Conference on Ada Technology 1993

I STRAda: A softwarc tool ror distributed Ada

I
D.Bekele, C.Bcrnon, M.Filjli, J.M Rigaud, A.Sayah

IRIT

f LUniversitt Paul Sabatier

118, Route de Narbonne

I 31062 TOULOUSE Ccdex

email: bckele@irit.fr

I
Abstract

Ada was designed for programming in the small as well as for programming in the large. As far as programming
in the large is concerned, its main features are:

I- packages for modularity,

tasks for concurrency,

Sand exceptions for reliability.

Currently, these features are well supported for centralized environments, however they raise some problems in
distributed environments. Several ways of addressing the issue have been considerea: for instance, in Ada 9X new
programming language constructs, e.g. virtual nodes, are proposed; we investigate an alternative approach which
consists of a software tool for transforming standard Ada programs into distributed Ada programs.

A
I
I
I
I
I
I
I 11th Annual National Conference on Ada Technology 1993 184

K<.

STRAda: A software tool for distributed Ada

(programmed mode) or dynamically (interactive or

1. 1nt.uctj11 automatic mode);

Inter-node communication is entirely
handled by the system and remains transparent to the

The importance of distributed systems has programmer.
urdergone constant growth ovet the past decade. This The STRAda system consists in translating one
trend is due to a number of factors including: Ada program into another Ada program. In the

- the decreasing cost of processors, transformed program, tasks are replaced by distribution
units and inter-task communications become inter-node

- the continuously increasing power of communication. The system provides of a user
these processors, interface used to place, monitor and control tasks in

- the high capacities and speeds achieved operational mode.

by computer networls. In part one of this article the authors classify
On the other hand, the complexity and the cost projects dealing with the Ada distribution issue. Parts

of applications running on these powerful systems two and three specify and substantiate the choices
have taken on considerable proportions 9 . The main adopted in the STRAda project. Implementation is
reason lies in the fact that it is often difficult to use dealt with in part four. The last section provides an
software design concepts and tools which are mostly evaluation of completed work.
intended for non-distributed programming, High level
languages very rarely include abstractions which make
distribution easy to handle. As a result, information 2. Current anproaches of addressing
characterizing the hardware configuration of the
network is directly embedded in the application code.
Structures of this kihAi are a serious obstacle to tne
portability and maintainability of the application. Althotgh the Ada language has not excluded the

distributed aspect of applications, it does not iacludeIt is also true that programmers may not feel the basic concepts necessary to a simple expression of
that the task of distributing their applications actually this distribution, as is the cse for paallelism and
concerns them. The use of several processors is a t I
simple way of accelerating the execution speed of their numer ofvinvedsotiat e beein brou cet aprograms. in this case, the description of distribution number of investigations have been brought to bear on

progams inthi cae, he escipton f 'istibuionthis aspect of programming which address the issue
functions by the programner becomes a painstaking frm vars dft a .rga.ng A assi thenisste

task Th prble is ow ne~f iplemntaionandfrom various different angles. A classification system
task. The problem is now one uf implementation andby 8
optimization of the application, methopds Bishop and Hasling 8sms up these

Ada is currently one of the few languages - How many Ada programs are
possessing a fully integrated parallelism model. involved?
However, version Ada83 incorporates no specific
distribution features. More particularly, the language Either a single Ada program is
does not define the unit of distribution (task, package, partitioned for distribution over the network or several
etc.) and contains no abstraction suited to the problem Ada programs are run locally at each node and
(processor assignement for tasks, inter-process communicate with each other across an independent
communication and synchronization, etc). message system.

The STRAda system (Systime de 2- How is communication among nodes

Transformation et de Ripartition Ada or A da expressed?
transformation and distributior s)steri) completes Ada Communication can be explicitly
and provides a simple way of solving the distribution expressed by the programmer of the application, or it
issue. It is based on the following principles: can be implicit and transparent to the programmer

when generated by the translator or tool dedicated to
-The task, which is the unit of this service.

parallelism in Ada, is chosen as the distribution unit of 3 - What is the degree of liberty left totheWht iapplicationlbety;ef t
the .application; the programmer as far as the unit of distribution is

- Processor assignement for tasks at the concerned?
various network nodes is performed either statically

"185 llth Annual National Conference on Ada Technology 1993

I,/

ISTRAda: A software tool for distributed Ada

A number of language constructs while a lower level abstraction sp..cifies how each
could be considered to comply with the profile of a action is to be completed
distribution unit, the most important being packages
and tasks, although subroutines and even variables The underlying piinciple of data dissimulation
could also be distributed. consists in rendering inaccessible certain details which

must not affect other parts of the system. In STRAda,
How is the distribution map for instance, the protocol used on the network is

I specified? hidden: authorizing it would constitute a breach of
SDistribution of units to the various distribution abstraction logic.

nodes can be explicitly described, using a dedicated
l~agrage for instance, or automatically by a dynamic Ada is one of the rare widely used languages to

'Xraphical analysis of the network used. incorporate a parallelism model. The Ada task is an
abstract model of parallelism and is independent of the

The authors define several ways of addressing host system. The rendezvous concept lets tasks
the problem according to the choices made with respect synchronize and communicate. This property is
to these criteria. The disadvantage of the most essential in designing portable parallel applications.
fundamental approach (several Ada programs)2 9 may

* be that checking among programs running on several On the other hand however, Ada does not
nodes could fail. However, this pitfall could be avoided provide an abstraction which can be used to express
by using dedicated communication packages. distribution. In the case of distributed applications, the

' Te programmer must therefore use the distribution model
p rThe next two classes involve single Ada provided by the host system. In UNIX systems for
S programs and imply constraints on distribution units. instance, the distribution model is defined by the
Communication can either be explicit 14, 1 or implicit process as a distribution unit and sockets the means of
27, 2, 10 commurnication between processes.

The In" lass explored involves Ada Consequently, the portability of such
applications ir inich no constraints are made on applications is badly compromised by the. fact that

I distribution u,,it6. The most advanced project in this implementation details which are too close to the
"area is the APFL project 15, 13 hardware used are taken into account.

The STRAda system used the Ada parallelism
STRAda and Software Engineering model as the basis of the distribution model. Indeed,

parallelism and distribution have many points in
common. Using the same unit for both parallelism andI The STRAda sys~em consists in transforming a distribution is therefore natural, the same being true for

classic Ada program into another equivalent program. communication and synchronization mechanisms. This
IThe es.ential aim of the transformation operation is to association enables the STRAda system to render
take into account the existence of several processing distribution totally transparent to the programmer. It
nodes in order to globally increase :he performance of can be said that parallelism in Ada is a programming
the application. The extensions fully comply with the concept which is available to the programmer and that
initial semantics of the language and are based on the distribution with STRAda is a programming concept

most fundamental software engineering principles, which is hidden from the programmer.

' [3.1. Porlta illity 3.2. Reliablility

Portability is the ease with which a software Reliability is the ability of software to operate
product can be adapted to different hardware and even under adverse conditions 22.

Ssoftware environments 22. Portability is improved by One of the most fundamental requirements of
applying software ergineering principles such as embeded systems, for which Ada was specificallya asdesigned, is reliability. This means that no errors are

The basic principle of abstraction consists in allowed to remain in the system. Residual errors are
extracting the vital property of one level while nevertheless inevitable such as erroneous input data,
omitting details that are not crucial 24. A high level for example. When exceptions of this sort occur, such

abstraction specifies which actions must be performed as a divide by zero, most languages stop processing

l1th Annual National Conference on Ada Technology 1995 185

STRAda: A software tool for distributed Ada

and the operating system takes over, this should not be phase dedicated to configuration: the Ada program
true of a reliable real-time system. pertaining to application logic is not modified.

Ada exceptions allow detecting abnormal 3.4. Olher characteristics
situations and processing them with specific action.
Detection of abnormal situations is ensured by the Efficiency means making good use of available
hardware, system software or the user application. Any hardware resources 22. It has often been thought that
exceptions detected must compulsorily be processed. the efficiency of an application diminishes when the

level of the languiage used to program it increases. The
In distributed Ada applications, the exception contrary has been proved with applications written in

concept cannot be applied to the whole application. In Ada and rewritten in assembly language. Indeed, the
effect, either the application consists of several executable originating from Ada is sometimes
independent applications, in which case exceptions extremely efficient. This can be explained by the fact
vary from node to node, or the application is a single that the compiler uses several optimizing techniques
program, in which case inter-node communication that assembly programmers do not use.
generally does not cater for exception transmission.
This type of situation occurs when exceptions take In the same way, optimizing techniques can be
place during a rendezvous between two tasks located on implemented (processor assignement to balance out
different nodes. loads, use of the right protocol, etc) in the STRAda

system which can make applications using this system
3.3. Rtiab.iJJJ.iy more efficient.

Reusability is the ability of software to be Ease of use refers to the ease with which the
totally or partially reused for new applications 9. Many users of a software program learn to operate it 22. It is
software components are similar: it would be obvious that the higher the abstraction level, the
interesting to exploit these similarities to avoid greater the ease of use. As STRAda possesses a higher
performing redundant work. In distributed applications, level of abstraction for distribution than distributed
there is often a need for a program wnich already exists programs written in Ada83, it is easier to use.
for a different hardware configuration (different number
of processors, different processor types, etc.) 4. ST~d and the solutions adonted

Reusability directly affects all other cost and

quality factors. When all or part of an existing software
program is reused, development costs are diminished in In the previous sections we have discussed the
all the phases of the software life cycle. Software importance of a high level abstraction model for
components already tested on other target systems are distribution. In the STAda project, we have reused
used, which increases the reliability of the application, the Ada task model for distribution. This choice is in

Ada provides a high degree of reusability thanks line with the target architecture: a network of
to features such as genericity: i.e. the ability to workstations. A finer de'Tee of distribution, such as
parametrize a library unit. Parametrization increases the that adopted by APPL1 5 seems to us to be better
reuse potential of these units, suited to a massively parallel a,'chitecture (example : a

transputer network).
Since no distribution units exist in Ada, data

relating to the hardware configuration the application is The choice of using Ara tasks as the
actually going to run on are disseminated throughout distribution units and the desirt to maintain Ada
the program. Reuse of the program for another concepts such as exceptions for the aistributed program
configuration (also called reconfiguration) is not a lead us to adopt the single program model for the
simple task since all levels of the distributed distributed application.
application must be reworked.

The basic principle of the project consists in
With STRAda on the other hand, all developing a minimal distribution kernel used to

information concerning the hardware configuration are implement all the more specific concepts of the Ada
supplied during another phase which is totally language. For the minimal kernel, we have opted for
separated from the application logic programming communication via message exchange. A certain
stage. Reconfiguration only involves modifying this number of aspects of the language are not accounted for

by the distribution kernel such as shared variables and
task termination. In section 5 we shail discuss

187 l1th Annual National Conference on Ada Technology 1993

STRAda: A software tool for distributed Ada

implementation of these points in terms of services could have considered using the technique fout,
pirovided by the minimal kernel. most compilers of multiplexing several tasks with i a

single UNIX process (pseudo-parallelism).
Implementation consists in translating an Ada Nevertheless, the implementation strategy adopted has

source program into another Ada program (figure 1). In the following advantages:
the transformed program, all constructs relating to
parallelism and communication are replaced by calls to - real parallelism within an Ada program
services provided by the STRAda kernel, is made possible on multi-processor UNIX stations:

To conclude, some of the most interesting - the underlying operating system

facets of STRAda include a minimal kernel adapted to (UNIX) can be reused more efficiently, as the

the Ada language and reuse of existing systems synchronization of an Ada task is expressed directly in

without any modification (Ada compilers, UNIX terms of the synchronization of the support process.

operating system etc.). In the STRAda system, parallelism and
_ distribution are implemented by remote task creation.

The site where the task is resident is currently specified
Texplicitly when the task is created.

A 5.2. Synchronization and communication

p: .p'l .i ..caton In order to install the aistributed version of

n Ada's synchronization and communication instructions,
we have chosen sockets to support synchronization and
communication. Each Ada entry is associated with a
socket and a port. The UNIX primitives (sendto,
recvfrom, se!ect) make it possible to send or receive on
one of these entries or tc select an entry from a set of
entries.

•dk n Currently, each Ada task handles its own rendez-
vous; we could have designed a more efficient strategy

. with each site having a single rendez-vous server.

The solution adopted has certain limitations,
but it also has the considerable advantage of enabling
direct reuse of the UNIX communication system.

Figure 1: The STRAda kernel 5.3. Excep.tio.ns

We have seen that developing a distributed

5. Defining a distributed kernel application with STRAda frees programmers from the
ada.ted to Ada Peed to plan for dise-ibution. This rule still applies

where an exception is raised at a site and has to be
handled on another site.

SIn this section, we shall lock at the
relationships we have identified between the concepts In a non-distributed application, the Ada run
and mechanisms of the Ada progrrmminj language and time system handles the propagation of the exceptionI the UNIX operating system. We shall do this by and locates the corresponding exception handler. In a
examining parallelism, synchronization and distributed application with STRAda, the STRAda
distribution issues. k.rnel handles the propagation of the exception

between two remote sites where necessary. As the
5.1. E fl s.• distribution unit is the task, such propagation is51 Parallelismuh i

required in the following cases:

We have quite naturally associated a UNIX
process with each Ada task. However, from a purely - w a e i s u
practical point of view, this may seem costly: we rendez-vous;

IIth Annual National Conference on Ada Technology 1993 188

7

STRAda: A software tool for distributed Ada

when attempting to rendez-vous with
a" aborted task; Transformed

when an exception is raised as a task AdapSTRADA TASX$is being createdt. Application , TAD TA . M...

It is useful to be able to handle exceptional
circumstances that can arise in distributed systems STRAda Packages Creation-Server
(such as communication or processor failures) by using kernel I
exceptions. The STRAda kernel must therefore be
capable of raising such exceptions and propagating Host UNIX
them to the destination tasks. System .6A

Messages Synchronisation and Creation requests
An exception that has to be propagated from commtrication received from... ~~~~~~sent to msae eevd ohr oe

one disifibuted task to another must be intercepted and other nodes romaesrcaivd othe re nodes
sent to the remote program in coded form. When the other nod es
program receives it, it is then decoded and the original
exception is explicitly raised in the destination task.
The Ada kernel then takes over on site. Figure 0 STRAda Arghi.e e

5.4. Architecture and_ rJ emenaton An application task synchronizes itself or
of the STRAda kernel

cormmunicates by using Ada's dedicated instructions
The STRAda kernel consists of: (i.e. task declaration or dynamic task creation, entry

call or acceptance of a rendez-vous on an entry, select,

- a package providing tasks with etc.). These subroutines use sockets to communicate
services for parallelism, communication and directly with a remote task, or with a Server-Creation
synchronization; task. Each Server-Creation task initializes tasks to be

executed at the site. It does this by creating a UNIX
a set of tasks, called Server-Creation, process and assigning it a unique name. In this way, to

each executing at each application site (see figure create a task on a site S, the parent task communicates
between: STRAda Architecture). via the STRAda package with the site's Server-

Creation task, which then returns the data that the
parent task needs to synchronize or communicate
directly with the task created (entry points represented
by UNIX sockets). The table below shows the contents
of the package in summary form.

STRAda primitives Function performed

CREATE Create task

CALL Call task entry

ACCEPT7 Accept rendez-vous without exchange of data (caller riot blocked)

ACCEPT.DO Accept rendez-vous with exchange of data (caller blocked until end of
rendez-vous)

SELECTT Accept one of several .,.- iez-vous, immediate or deferred

189 11th Annual National Conference on Ada Technology 1993

_ _ _-

STRAda: A software tool for distributed Ada

6.2. . Functional transformation
6. Transforming the Adia model into a6.IX mtdel aAs we have already seen in the previous section,

UNIX mode' the CSG's SSL language is capable of defining and
handling abstract trees of an abstract syntax. Here, we
want to transform abstract trees in DIANA notation.

In this section, we shall take a brief look at This transformation can be defined as a recursive
how the transformations proposed are implementtd, function on the abstract tree of a program: for each

We start off with an overview of the tool we used, toe type of node N, we define a transformation function
Cornell Synthesizer Generator 26 (for more details and that defines N and, if necessary, recursively invokes the
examples, refer to 25). We then go on to discuss the functions associated with the types of the child nodes
transformation principles and choices adopted. of N.

6.1. The Cornell Synthesizer Generator Although theoretically possible, for the

The Cornell Synthesizer Generator (CSG) is a the CSG. Whtrategy can only be implesented using

tool that uses an assigned abstract syntax to generate a transformation function references attribut&: associated
syntax editor. The programming language used by the with a node in the abstract tree, which may be the
CSG is the Synthesizer Specification Language (SSL). environment inherited from this node, for example.
In SSL, abstract trees are specified using the concept of However, referencing an inherited or synthesized

a phylum. A phylum is a type of tree with nodes that attribute in an SSL function is not possible using the
are constructed recursively using specific operators aid current version of ihe CSG.
phyla. For the STRAda project, we chose the abstract
syntax DIANA 12 (Descriptive Intermediate Attributed 6.2.2. Transformation by calculation of
Notation for Ada). The main reason for this is that
DIANA is considered to be the standard notation for
Ada programs, so STRAda will be able to integrate In attribute transformation, we only define the
with other tools like Anna 18. Another important local equations required to relate each node to anI feature of the CSG is that the abstract trees may attribute representing its transformation. Provided that
contain synthesized or inherited attributes 11. These circularity is avoided, an attribute definition can
attributes are normally used to express the language's reference other attributes.
semantic checks. We have used them in the STRAdd
project to synthesize other programs. This is the strategy that we have adopted. An

interesting feature is that the abstract tree of the initial

6.2. Transformation orinci2le$ Ada program is not modified, as the Ada program ofI the application to be transformed is the attribute
Here, we shall look at the transformation associated with the root of the original Ada tree.

principles used in an Ada program. We should recall
that the aim of transformations is to replace all Ada 6 2.3. Transformation examples
instructions concerning parallelism and
synchronization with equivalent instructons calling The examples below are designed to show how

the STRAda kernel we have already described. We an Ada program is transformed into an equivalent AdaIconcentrated mainly on: program by going through the STRAda kernel. The
inm ofirst example is a simple one based on the accept

- a global functional transf rmation in instruction only, and the second example shows how
which the abstract tree of a program is completely the select instruction is transformed.
transformed by an SSL function; E

- a local attribute transfor ation in
which each node of the abstract tree of an A program type MSG is array (1..n) o f
synthesizes a transformed node, ther global character0
transformation therefore consisting of the atribute of accept RETRIEVE (INFO : MSG) dothe root of the program's abstract tree. • INFO : = BUFFER;

The main point to stress is that whatever type end RETRIEVE;
of transformation is used, a new Ada program is
obtained.

llth Annual National Conference on Ada Technology 1993 190

/i

STRAda: A software tocl for distributed Ada

This Ada code is translated into the equivalent LENT (NB) :- ENTRYP;
Adacode, ENTSEL := SELECTT(LENT (I..NB),

declare case ENTSEL is
when ENTRY P => ACCEPTT(ENTSEL);

Info : msg;

begiu S :- S - 1;
when ENTRYV => ACCEPTT(ENTSEL);Accept do (Ta skBoxent ryRet rIEve,S: S+1

Callername); S:- S + 1;

Info :- BUFFER; when others => raise

ACCEPT END Taskingerror;

(TASK_Box.entryRetrieve, end case;
Tp-out -> (TabJparam'first > end;

(Info'address, Info'size),
Callername); 7. Processor assignement for tasks

end;

In this section, we shall expand on the aspects
of processor assignement. The STRAda approach

ix, amj/e 2makes it easy to define a generic processor assignement
procedure. This generic procedure can be instantiated in
the following contexts:

The UNIX setect primitive, which waits for a 1 - Task control station
message on a set of ports, enables the Ada select
instruction to be easily translated into the equivalent This station is able to locate tasks interactively.
Ada code: It provides operators with important information that

will enable them to determine their choices (processor
loads, assignemen: of the same processor for tasks

select likely to communicate with the task to be ceated, etc.)when >0 => through an ergonomic man-machine interface.

accept P. However, this mechanism is only useful for
S :- S - 1; tasks with long lifetimes (e.g. servers).

or
accept v; 2 - Configuration program
S := S + 1; -

The configuration program is written in a
end sele separate phase of the main program. It is written in

Ada and consists of an assignement function called by

the task creation function. This method has theThis Ada code is translated into the equivalent advantage of being valid for programs whatever their
Mda cod- lifetime.

declare
3 - Automatic processor assignement managerL-ENT : LISTE OF ENTRIES (1..MAX);

NB : integer :- 0; The manager frees the programmer from having
ENTSEL : ENTRYNAME; to worry about processor assignement if he/she so

begin desires. Several managers can be used, each designed
if S>0 then for a specific sitmation: balancing of processor loads,

NB :- NB + 1; grouping of tasks communicating frequently on the

L_ENT (NB) :- ENTRYP; same site, etc..

end if;
NB :- NB -1;

"191 11th Annual National Conference on Ada Technology 1993

j STRAda: A software toK)l for distributed Ada

model more closely reflects rendez-vous than the RPC
8. Dis.uiaisn primitive.

Other limitations wore imposed on the use ol

8.1. Assesnsrent the task inot. ' The COUNT attribute associated with
the queue is in, iinp!emcnted as it is impossible to tell

In this part, we shall discuss the approach the size of the queue on the socket. Flexible arrays are

adopted for the STRAda project. As we have already not accepted as a rendcz-vous parametcr. The same
seen, the STRAda approach is above all applies to access types, with the exception of task
transformational: we have not attempted to define a access types, since the Utsk names are replaced during
new language or system, but simply studied how to transformation by a single name over the entire

transform certain constructs of an existing language distributed environment. Finally, exceptions that are

into constructs of an existing system. We feel this not pre-defined arc not fully propagated. When a non

approach is a good one for several reasons: pre-.d,,'Jned exception has to be propagated from one
site to another, the exception USE-R _-ERROR i.. rad,,cI

familiar, of the shelf and widely used at the remote site.

cornpilers and systems can be used, this ensuring good 82 Ada9X nITAda
portability;

- it is easily adaptable to other systems: Like all other projects studying distribution
we could also consider transforming constructs for with Ada, STRAda attempts to proide distributed
Choius 28 or for other real-time kernels, applications with what was missing fromn Ada93. The

As for installation, we have left aside the definition of a new Ada standard is near completion.
problem of shared v'ariables, task termination and tine We already know that most of the shortcomings of the

management (delay instruction) for the time being. We current version, with respect to distributed systems,
would stress that with regard to shared variables: will be fixed by Ada9X. Here, we shall attempt to

assess how Ada9X will respond to the needs of

I firstly, certain off-the-shelf systems distributed applications and to what extent STRAda
now provide global memory abstraction over a will continue to be of use oace Ada9X has been
network; released.

Ssecondly, thanks to the minimum Unlike Ada83, Ada9X defines a distribution
STRAda kernel, we can consider a schema in which model. The language has a distribution unit, called a
shared variables are implemented as distributed partition, and a model for communicating between
variables encapsulated in remotely iccessible tasks and paititions. On compilation, packages lrc put into the
transformations making it possible to substitute access following classes:
to these shared variables by calls to entry points
defned by the tasks. pure packages:

The problem of task termination, however, is remote call interface packages;
trickier, as an algorithm adapted to the Ada model is
required. This point is being studied. shared passive packages;

normal packages.
We also made some implementation choices It is only at the link editing stage that the

that sometimes impose limitations on the system. partitions are made up by groups of library units.
First of all, we chose a UNIX process to implement Partitons may be:

tasks, even though a thread more c!osely reflects the
nature of a task. The reason for this choice is one of active partitions, which are pseudo-
history: threads were not yet supported by UNIX when independent programs able to make or receive remote
the Ada project was started. They are still not ý:alls;
supported by a lot of systems, and for this reason they
would have reduced STRAda's portability. shared passive partitions,, used to

manage data in shared memor) areas.
We also chose sockets instead of RPCs The application programmer has to provide the

(Remote Procedure Calls). This is related to the choice, partition communication sub-system interface for
of Ada rendez-vous as the mechanism for transferring messages between partitions. The
communication between remote tasks: tne socket compilation system uses this interface to create

I l1th Annual National Conference on Ada Technology 1993 192

STRAda: A software tool for distributed Ada

parameter passing stubs automatically. This means A practical aspect that we feel is of interest
that a standard distribution mode! can be used without concenis transformations for existing real-time kernels
being dependent on a special type of distribution or operating systems; this would make it possible to
environment. This model solves the problems write or reuse applications written i'i a h'gh-level
encountered when attempting to design distributed language, and to reuse existing and dedicated real-time
applications with Ada83, for two reasons: kernels for certain types of architecture.

portability is improved by the use of a We think that STRAda provides some solutions
standard distribution model; only the body of the to the problems of distribution with Ada; this will still
standard communication sub-system interface be the case when Ada9X has been released, since the
RPC_SUPPORT needs to be supplied when changing approach ased for STRAda is a complement to that
to another distributed environment; used for Ada9X.

static and dynamic reconfiguration is
simpler in Ada..XA..ain. Finally, from a theoretical point of view, it
software is not assigned to specific hardware until after would be interesting to validate the corresponding

code has been compiled. transformations.

Static reconfiguration with Ada9X is achieved In conclusion, the STRAda project has allowed
simply by changing the partitioning specifications or us to research and establish links between different
by allocating procescors so that the distributed program areas of information technology, by working on both
can be run on a different configuration. For dynamic system and language aspects. This experience proved to
reconfiguration, we need to be able to create dynamic be very rewarding.
links between partitions, This is done either by using
subroutine access types or tagged class access types.

Exceptions are used in inter-partition
communication. An exceptio:i raised on calling a
remote subroutine is propagated to the caller prop am.
Similarly, a COMMUN!.CATJONJRROR exception [F1 C. Atkinson and A. Di Maio
is raised in any exceptional circumstances caused by a From Ada: to Dn
network failure or a remote hardware failure. Distri!uted Ada: developments and experiences,

pages 105-136,

"he Ada9X distribution model is completely Cambridge University Press 1990

independent of the parallelism model. This makes
implementati'mn easier, as the model chosen is well (21 A. Ard Mi and L. Lundberg
suited to distributed systems. On the other hand, in The MUMS Multiprocessor Ada Projectapplications where distribution is required only to Distributed Ada: developments and experiences,

improve response times or fo. more efficient use of pages 235-258,
hardware, it would be useful to be able to free the Cambridge University Press 1990
programmer from distribution issues. This is where
STRAda may continue to be helpful once Ada9X has (31 C. Atkinson, A. Di Maio and A. Natali
arrived. STRAda makes ik possible to distribute any Adafor distributed systems
parallel unit, meaning that a distribution system can Cambridge University Press 1988
remain totally transparent. [41 M.J. Bach

The Design of the UNIX Operating System
Prertice-Hall International Editions 1986

9. Conlusion [51 G. Bazalgette, D. Bekele, M. Filali, C. Bernon,
J.M. Rigaud & A. Sayh
STRAda: Un systeme de transformations et de

A prototype of the STRAda project is currently ripartition pour le langage Ada.
operational. We have tested several standard parallel Fourth International Conference, Software
programs, like an adaptation of the dining Engineering & its applications, 1991, Toulouse,
philosophers' problem in a physically distributed France, proceedings p. 309
environment.

193 l1th Annual National Conference on Ada Technology 1993

STRAda: A software' tool for distributed Ada

Distributed Ada. developments and experiences,
[6] G. Bazalgette, D. Bekele, C. -non, M. pages 67-104,

Filali, J.M. Rigatic A. Sayah Cambridge University Press 1990
STRAda: An Transformation and
Distribution S): [15] R. Jha and G. Eisenhauer
Ada: Moving To. 2(1),, 11 th Ada-Europe Honeywell Distrib~ited Ada - Approach
International Conference Distributed Ada: developments and experiences,
Zandvjor!, The Netherlands, June 1992, pages 137-157,
Proceedings Cambridge University Press 1990
Springer-Verlag Heidelberg 1992

[161 R. Jha, M. Kamrad II, and D.T. Coinhili
[7] M. Boari, S. Crespi-Reghizzi, A. Dapra F. Ada program partitioning language: a notation

Maderna A. Natali for distributed Ada programs.
Multi-microprocessors Programming IEEE Transitions on software enjineering,
Techniques: MAIL, a new set of tools 15(3):271-280, mar 1989
IEEE compt'ter, Jan 1984

[171 M.B. Jones and R.F. Rashid[181 J.M. Bishop and MJ. Hasling Mach and machmaker: kernel and language

Distibited Ada - the Issues support for object oriented distributed systems.

Distributed Ada: developments and experiences, In N. Meyriwitz, editor, OOPSLA Proc. or
pages 1-14, object-oriented programming systems,
Camb.idge University Press 1990 languages and applications, pages 67-77. ACM,

sep 1986
[9] G. Booch

SSoftware Engineering in Ada [18] B. Krieg-Brilckner and D.C. Luckham.
Benjamin/Cummings Publishing Company, Anna: towards a language for annotating Ada
Inc., Menlo Park, Californie programs.

SIGPLAN, 30(3):228-238, nov 1980
[10] R. Dewar, S. Flynn, E. Schonberg and N.

Shu!man [19] F. KGrdon, P. Sens
Distributed Ada on Shared Memory Ripartir des programmes Ada sur un ensemble
Multiprocessors homogene de machines UNIX, une experience
Distributed Ada: developments and experiences, de rialisation
pages 222-234, Ada, premier bilan d'utilisation, pages 123-135,
Cambridge University Press 1990 Congr~s Ada France nov 1991.

il1l P. Deransart, M. Jourdan, B. Lorho [201 J.C. Knight, J.I.A. Urquhart
Attribute Grammars: Definitions cnd On the implementation and use of Ada on Fault
Bibliography. tolerant Distributed Systems
Springer Verlag, aug i968 Ada letters 1984, 4(3), pp. 53-64

[121 A. Evans, KJ. Butler, G. Goos, and Wulf [21] B. Liskov
W.A. On linguistic support for dis:ributed programs
DIANA reference manual. Technical report TL IEEE Transactions, 8(3)
83-4.
Tartan laboratories incorporated, feb 1983 [22] Bertrand Meyer

Ccnception et programmation par objets
[13] G. Eisenhauer and R. Jha InterEditions, Paris, 1990

Honeywell Distributed Ada - implementation
Distributed Ada: developments and experiences, [23] Manuel de Rdfdrence du langage de
pages 153-176, programmation Ada
Cambridge University Press 1990 Alsys, fev 1987

[14] A.D. Hutcheon and A.J. Wellings [24] D.T. Ross, J. B. Goodenough et C.A. Irvine
The York distributed Ada Project Software Engineering: Process, Principles and

Goals

11th Annual National Cor,ference on Ada Technology 1993 194

STRAda. A software toot for distributed Ada

Computer, Mai i975: 65

1251 T.W. Rcps and T.Teitcibaum
The Synthesizer Generator. A System for
Constructing Lan6,uage-based Editors.
Springer Verlag, 1989

1261 T.W. Reps and T.Teitelbaun
The Synthesizer G merator Reference MBanta.l.
Springer Vexlag, third rJition,1989

1271 A. Volz, P. Krishnan and R. Theriault
Distributcd Ada: a Case Study
Distributed Ada: developments and experiences.
pages 15-57,
Cambrilge Univcrsity Press 1990

(281 H. Zimmermann, J. S. Banino, A. Caristan, M.
Guillemont and 0. Morisset
Basic concepts for the support of distributed
systems: The Chorus Approach
IEEE Catalog NO. 80-83218, pages 60.67. Apr
81
Computer Society Press

1291 B. Dobbing, 1. Caldwell
A Pragmatic Approach to Distributed Ada for
Thnsputers
Distributed Ada: developments and experiences,
pages 200-221,
Cambridge University Press 1990

C. Bernon and D.Bekele are preparing their PHD at the
Paul Sabatier University in Toulouse, France. M.
Filali is a research worker at the CNRS (Centre
National de Reeheache Scientifique). J.M. Rigaud and
A. Sayah are assistant professors at the Paul Sabatier
Univwarsity. The domain of interest of the authors are
disvibuied sysems, Ada and object oriented languages.

195 11th Annual National Conference on Ada Technology 1993

I

Ii Software Re-Engineering Panel

Moderator: Jim Hohan, Naval Air Warfare Center

Panelists: Jack Cooper, Anchor Software Management
Jay Crawford, Naval Air Warfare Center
John LeBaron, US Army CECOM
Richard Vener, Comptek Fed'eral Systems
Doug Waugh, SEI-SWAP

I
I
I

I
I

I
I
I
I

I 11th Annual National Cc,,ference on Ada Technology 1993 196

Program Reuse Experience

Moderator: Dr. Dennis Ahern, Westinghouse Electronics Systems
Group

Panelists Session 1: Larry Lang, F-22 SPO
Marcus Musgrave, Lockheed
James Williamson, Wright Laboratory
Ed Beaver & Phil Johnson, Westinghouse

Panelists Session 2: Robert Giordano, PEO, Army Command & Control
Randy Korich, ATTCS CASS
Sandra Zucker, GE Aerospace
Harry Joiner, Telos Systems Group

197 11th Annual National Conference on Ada Technology 1993

I SEI Measurement Program

Moderator: Dr. Robert Park, Software Engineering Institute

Panelists: Judy K. Fleming, IBM Federal Systems CompanyI Marshall Potter, Naval Information Systems Mgmt Center

11hAnaIainlCneeceo d ehooy19 9

Existing Re-engineering Tools & Capabilities

Moderator: Hans Mumm, NRaD

Panelists: Romel Rivera, Xinotech Research, Inc.
Evan Lock, Computer Command and Control Company
Alex Blakemore, Genoa Software Systems
Wid Spalding, Dynamics Research Corporation
Buck Rizul, Mark V Systems

199 llth Annual National Conference on Ada Technology 1990

- --

I

I Futures Panel

I Moderator: Miguel Carrio, MTM Engineering, inc.

Panelists: Dr. Samuel Metters, CEO, Metters Industries
James Smith, President & CEO, SEMA Corporation
Heinz Kagerer, Vice President, SIEMENS-NIXDORF

I

I
I

I
I
I
I

I 1th Annual National Conference on Ada Technology 1993 200

MATHEMATICS, ENGINEERING, AND SOFTWARE DEVELOPMENT

Michael J. Lutz

Rochester Institute of Technology
Rochester, New York

Abstract: While modern engineering prac- worst. However, armed with such knowledge, it will be
tice owes much to both science and mathe- easier to spot areas where theory can have the greatest
matics, it is not identical with either. It is positive effect.
the thesis of this paper that failure to recog-
nize the differences between mathematics on I have chosen the field of formal method. to exemplify

one hand, and engineering on the other, is the both the problems and promises of theory as applied to

root cause of the failure to transfer comput- practice. While this is the area with which I am most
-ing theory into industrial practice. Only by familiar, I firmly believe that similar comments apply
und ag theory unto ndtustreal patheegice.Only bto other applications of mathematics and science. For
understanding the nature of the engineering instance, a recent book on software reliability directly• . method and its relationship to mathematics dr tendsopatioes.

can we hope to infuse rigor into software de- addresses the needs of practitioners.3

velopment, and in turn transform a craft into The next section provides a brief introduction to the
an engineering profession. world of formal methods, providing a broad sketch of

the method types, as well as the role each type may
Introduction play in software development. A discussion of the engi-

neering method follows, with particular attention paid
A recurring theme in discussions of software practice is to the role of science. This leads naturally to a dis-
the need to provide a more "scientific" foundation for cussion oi" the use of formal methods in the context of
the field. In part this viewpoint is based on the patent the engineering method. In particular, a strategy is
success of science in advancing modern engineering, proposed for the effective transfer of formal methods
One obvious conclusion is that software development to standard practice.
requires a similar rigorous, mathematical foundation
before it can truly be called software engineering. 1, 2 An Overview of Formal Methods
Supporters of this position are disconcerted by the fact
that theoretical results have little effect on the state Any discussion of formal methods requires a definition
of the practice. of this term:

It is my thesis that at the failure of theory to influ-
ence practice is rooted in a lack of appreciation• of the A formal method is a mathematical system
fundamental differences between science (spec ifcally, and associated rules of inference used to
mathematics) and engineering. Indeed, I believe that model and reason about some characteristic
at least rome of the resistance to formalism is based of a software system.
on sound engineering principles, however poorl artic-
ulated. While many such systems are applicable to software
Many of those advocating increased rigor, my If in- development, the presentation will concentrate on

cluded, were trained as mathematicians or scien ists, those describing functional behavior, This is where the

not as engineers. Given this, it is important to in esti- majority of work to date has taken place, and where,
gate the methods of engineering and their relatio ship as a consequence, the mathematical models are most

to science and mathematics. Without such an under-
standing, attempts to apply theory to the engineering Even with this restricted focum, however, further cat-
of software are naive at best, and counterproductive at egorization is desirable. Perhaps the clearest distinc-

201 11th Annual National Conference on Ada Technology 1993

'Ition is between the model-based approaches such &asZ poin Its above. In all cases, mathematics (specifically
and VDM, 5 and algebraic (equational systems) such as discrete mathematics) is used to characterize the be-

* OBJ.6 Model based systems use a cnil-ction of math- havior of a software product. The question remains
ematical entities (sets, relations, sequences, etc.) as whether or not these systems are useful as engineering
building blocks to construct problem-specific models. tools. To answer this question, we must first eitermine
Algebraic systems are based on equations relating val- what constitutes engineering, and how mathematics
ues drawn from different sorts. As a rule, algebraic supports engineering endeavors.

systems are used primarily to define the semantics of
abstract data types (ADTs), whereas model based the- The Engineering Method
ories are employed for system level descriptions, OfI course, there is large overlap in the problems to which If engiileering disciplines are to serve as guides for soft-
these two approaches apply. ware development, then an investigation of the engi-

Comptin mehod ca alo beclasifed y te sft- neerinag method is in order. That is, the focus must
Competn deeomentphoscnaleso bherae fidb they aemsusoful. be on the sorts of problems that require engineers,

ware dysevel fopm ent pha e, s weete r most feunl usefdl and how engineers approach such problems. We are
Ther system , spcfictornxm, ishoug t fprocequentl use less concerned with the goals of engineering than with

carr itthrughdesin ad ipleentaion Siilaly, the processes by which engineers achieve these goals.
cMarry it an throg d pesig iain and iml dentaion. Simlal, With respect to formal methods, the question is even
thouM lso smphanis the speiiatiyon thand er deignpases, more specific: what is the role of mathematics and sci-

S though is gurempaisi clemarlnd th la ttaer.is Finalily, ence in the everyday activities of practicing engineers?

firkstrafs guardmpedcmmnatind languagness uis g primaril The answer should help determine if and when formal
for roos of(imlemntaton)corrctnssusin a or- methods can be useful in software development.

mal design specification already at hand.
The elaiveimprtane o moelig vs resonng ro- A problem with this investigation is that most engi-

Thde a hrelarpetive. iprAnce fofrmodln vehos. reaonbingero neers are not introspective by nature. In addition
videlin a n th rd erspecivge. All r formal mehdi sc omnblesine while the philosophy of science is a respectable aca-

moeing epands fromteasoning, yto thee isatdisernibleashift- demic discipline, similar work on the philosophical
tins emphasid from theaforme to thelmelatter. as actd foundations of engineering is rare indeed. Yet with-

VDM are often presented as tools for precise and con- ouschapretiitspeum uusfrn-
cise modeling of a system or its components. In ad- engineers to speak of any practice as promoting soft-

ditonthy ae lsouse t veif deignstpsby ware engineering. Fortunately, there are professional
ditin, heyareals usd toverfy esin seps by engineers who have written about their profession and

showing the formal design model mirrors the formal its workings. 9' 10, 11I specification in all essential properties. At the im-
- -plementation stage, where a system like Dijkstra's is A primary source for in1 investigations is a short work

applicable, the system has been partitioned into man- by Billy V aughn Koen. 1In this 75 page monograph,
ageable sized components, each of with a precise spec- Koen tries to define the engineering method in a man-I ification. Here the modeling activity is implicit, while ner that is acceptable to professional engineers and
the inference rules highlight the role of formal reason- accessible to the public at large. In Koen's view, the
ing in simultaneously creating algorithms and proving engineering method is:
their correctness.I A final role that formal methods can play is in cata- The strategy for causing the best change in
loging systems of reusable components. The analogy a poorly understood or uncertain situation

* here is to a standard IC component catalog; an ex-wihnteailbersuc.
* ample would be using the two-tiered Larch system 8 To an engineer, best is not absolute, but relative to the

to describe interfaces of C modules. By providing engineer's ability to assess and balance both technical
complete, accurate, and concise descriptions of library and societal issues. Thus professional engineers fre-I components, formal methods help developers evaluate quently disagree over proposed designs, but primarilythe fitness of components for their application. Note ontebssfwhcapcsarsiiiatadwih
that this use of formal methods is primarily one of ca edsisdasicneunil
modeling. caen bhen d amssedt tas inonequential.igmehd a
There is a common thread through all of the view- ol eudrto steapiaino prpit

Koenl theundaserstso tat the englineeriong mtod cprorane

U 1th Annual National Conference on Ada Technology 1993 202

engineering heuristics. He defines the "state-of-the- * Allocate resources as long as the cost of not know-
art" (or sofa) as the heuristics available to the engi- ing exceeds the cost of finding out (expend re-
neering profession at a specific point in time. Each sources to evaluate and reduce risk).
engineer has his or her own sota, which reflects the
heuristics he or she can bring to bear on a problem. Many of these are directly applicable to software de-
An engineer engages in best practice to the extent that velopment. Firms that make ra~dical, uncontrolled pro-
his or her individual sota intersects with that of the cess changes often regret their impetuousness. Simi-
profession as a whole. larly, prototypes are promoted as a way of reducing
Koen draws a strong contrast between this pragmatic the risk that delivered products will not satisfy the

approach and the processes of science. Two conflict- customer.

. ing scientific theories cannot both be correct: at least One of Koen's heuristics discusses the use of science
one is wrong. The victorious theory in any scientific (and by extension mathematics). Koen draws a sharp
debate is the one which explains a broader spectrum distinction between applied science on one hand and
of phenomena, or which provides a simpler model of engineering on the other:
the same phenomena.

e The thesis that engineering is applied science
Engineering heuristics, however, are never right or fails because scientific knowledge has not al-
wrong. Instead, they are more or less applicable in a
specific context. Indeed, many engineering heuristics ways been available, is not always available
are discarded scientific theories that prove sufficient for always appropriate for use.
the task at hand (e.g., Newtonian physics). What is
more, the engineering sota can accommodate conflict- ...

ing heuristics, with higher level heuristics to determine The engineer recognizes both science and its
* when each is used. use as heuristics, although very important

ones, to be applied only when appropriate.
There are two key consequences of Koen's perspective,
First, engineering practice has no absolute measuie Examples abound of scientific and mathematical the-
for evaluation, if for no other reason than the sota is ories that took decades, even centuries, to be incor-
undergoing constant change. Second, the heuristics porated into engineering practice. Many applications
used in a particular case depend on more than purely of Fourier analysis, for example, had to await the de-
technical factors: societal norms, resource constraints, velopment of digital computers and the dissemination
and evaluation of risks. Koen mencions the Golden of the Cooley-Tukey FFT algorithm. Similar obser-
Gate Bridge, which is not really made of gold despite vations may be made about the use of finite element
that metal's advantageous properties. analysis in mechanical design.

Thus, in Koen's view, a concept, technique, or ap- In summary: engineers do not ignore problerns simply
proach is judged by its relevance to the task at hand. because scientific theory is lacking, nor do they blindly
And, of course, as judgement is involved there is al- apply all scientific results as they appear. Science is
ways a chance things may go sour. What distinguishes a powerful tool for engineering, but the tool's use is
engineering is the evolution of heuristics that succeed guided by heuristics that also consider time, cost, and

- much more often than they fail. other resource constraints.

Koen discusses a variety of heuristics ate various levels While this discussion has been based on Koen's work,
of detail. Some are quite specific to a branch of engi- his opinions are supported by other commentators cn
neering; those for software, for instance, include avoid- the engineering scene. 9 , 10, 12, 13 In all cases, the crit-
ing gotos and writing procedures that will fit on one ical issue in engineering, and the focus of engineer-
screen. However, there are also higher-level heuristics ing creativity is on design, which can only be under-
shared by most engineering disciplines: stood in the context of engineering judgement. This

..* Work at the margin of solvable problems (don't judgement is co-terminus with the discriminatin5 use
stretch too far beyond what is known to work). of heuristics, which in turn provides a useful reference

point when considering the application of computing
* Make small changes to the state-of-the-art (don't theory in software engineering. The particular ques-

make radical changes to the process or the prod- tion we must address is how to increase the value of
uct). the heuristic "use formal methods."

203 11th Annual National Conference on Ada Technology 1993

I

I Formal Methods and Software Engineuring ifications. Once the use of formalism as a descriptive
tool is accepted, it becomes much easier to incremen-

It is safe to say that use of formal methods is not tally address istibes of formal c3nsistency anw_!ysis and

common in industry. The previous section gives us verified design. This may, in time, lead all the way

clues as to why this is so. First, formal methods are a to formal proofs of some components. Note, however,
dramatic departure from current practice, aand this is that in all ceses the decision of whether or not to for-

counter to the "small change" heuristic. Second, while mally verify a particular component remains heuristic.

formal methods are elegant science, most practitioners The most frequently cited case of industrial formal
do not believe they are cost-effective. A recent book methods is the CICS rnengineering work at IBM's
contains a scathing attack on formalism on just such Hursley Labs in the United Kingdom, performed in
grounds. 14 conjunction with Oxford University.17 In this case,

There are many reasons for such skepticism, not all Z is used to model the CICS components being reengi-
S of which are easily dismissed. Part of the problem neered. While refinements to Dijkstra's language are

* O is the emphasis (at least in the U.S.) on formal pro- part of the process, it app ars that the modeling corn-

gram proofs. Not only do such proofs appear tedious ponent is most importan'. In particular, Z is now be-
and time-consuming, they presuppose a formal speci- ing used to provide precise interface specifications for

fication without describing how such specifications are CICS application developers.

themselves developed. What is more, such proofs oc- Consumable Mathematics
cur at the implementation stage of the developmentSlife-cycle, which consumes a relatively small propor- Another impediment to increased use of formal meth-
tion of a project's resources. Finally, proofs do little ods is the level of mathematical sophistication re-
to increase confidence that the specifications are cor- quired'. In most engineering disciplines, practitioners
rect, or that the design reflects all requirements. Yet become master users of high level mathematical and
is is increasingly clear that specification and design er- scientific results. Engineers use handbooks and other
rors are both more expensive to repair and more per- reference material to access the essence of a theory; de-
nicious in their effects than those introduced during riving necessary information from scratch is unusual.
implementation. Even in cases where engineers must apply fundamental
With these criticisms in mind, and remembering the principles, they do so at an abstract level (e.g., usingI key tenets of the engineering method, it is feasible to general differentiation and integration rules).
consider how formal methods might be most effectively Most formal methods, however, require intimate and
used in software development. The following sections detailed knowledge of fundamental mathematical the-
sketch a three-phase strategy to increase the accep- ories. This may be a natural (if regrettable) conse-
Stance and application of formal methods. quence of the immaturity of these methods. Still, the

Emphasis on Modeling fact remains that engineers rarely resort to the limit
* definition of differentiation. Similarly, we should not
U As mentioned above, it is skepticism about proofs (i.e., expect software engineers to routinely employ the low-

formal reasoning) that dominates discussions of formal level inference rules of natural deduction.
methods. One way to address this issue head-on is to An example of providing such higher level abstractions
concentrate on the modeling aspect. First, it is eas- is the work on instrumentation models at Tektronix.18
ier to develop and read formal specifications ýhan it is The creation of such models requires a deep knowledge
to reason about their properties. Indeed, it has been of Z semantics. Development engineers, however, can
argued that using mathematics as a descriptive tool simply employ these models, having been assured that
is valuable in and of itself, as the result is increased they rest on firm foundations.
clarity and reduced ambiguity. 15 , 16 Second, it is eas-

* • ier to gain acceptance for a new technology when it Engineers are not and should not be mathematicians.
U addresses front-end problems. Instead, the formal methods community must develop

higher-level "consumable mathematics" corresponding
The prerequisite mathematics are the same for both to continuous mathematics for traditional engineering.
formal specifications and proofs of correctness. How- It is heartening to see that work is progressing on this
ever, the level of description is higher and the potential front. 19 , 20
for improved quality more obvious in the case of spec-

/

//

llth Annual National Conference on Ada Technology 1993 204

Education of Future Professionals ogy to industry, the seeds of this transfer have been
planted.

The role of education in successful technology crans-
fer is vital. There are many instances where technol- Conclusion
ogy introduced in the classroom supported significant
change in industry within a few years. The success of A formal, scientific foundation is required if software
the Unix system, at least in the engineering worksta- development is ever tc Le rlassilied as engineering.
tion marker, is in large mea ure due to the wide-scale However, developers of this foundation must be aware
"use of the system by academia in the 1970's. It does of the processes underlying er.3ineering endeavors if
not mat'er whether one thinks this was good or bad; the resulting theory is to become part of standard
what is significant is that academic experiences led to practice. Based on an investigation of the engineer-
expectations that were eventually met by industry. ing method, this paper has proposed one strategy

Given this, it is crucial that students be exposed to for achieving such integration with respect to formal
formality in such a way that they consider it an im- methods. Similar strategies must be defined for other
portant component of their intellectual toolkits. If this areas of computer science so that a modern software
is not !o, there is a risk that the next generation of engineering discipline can emerge.
developers will be as skeptical as their predecessors
about formal methods. Thus, the prescription above Acknowledgements
is as valid for software engineering curricula as it is
for industrial acceptance. That is, instructors should My views on engineering and its relationship to soft-
stress modeling early, postponing formal proofs until ware development have been honed and sharpened by
such time as their significance can be demonstrated, my work with dedicated engineers in industry, and by
The result: more graduates who appreciate wh,' for- thoughtful and provocative discussions with associates
mal methods have to offer and who can articulate these in RIT's College of Engineering. My friend and col-
advantages during their professional careers. league Henry Etlinger has provided the positive crit-

I hicism that helped me clarify my positions. Finally,"I have adopted such a descriptive approach in two Suzanne Bell of KIT's Wallace M'!morial Library has
ducourses I teach at nIT. The first course, an intro- been of invaluable assistance in helping me track down
Sduction to design and implementation for sophomores, relevant materials in the areas of science, engineering,
uses simple pre and post conditions to defiae the con- and technology transfer.
tract between clients and implementors of modules. d ct
addition, implementors are required to develop invari- Re
ants that characterize the legal internal states of their
modules. While our teaching language is Modula-2,
the spirit is that of CLU-based work at MIT.2 1 I con- 1. Mary Shaw. Prospects for an engineering dis-

sider this technique successful, as many students have cipline of software. IEEE Software, 7(6):15-24,
carried these practices over to later courses taught by November 1990.

others. 2. Anthony Hall. Is software engineering? In

The second course is on sp 'ification and design, taken C. Sledge, editor, SEI Conference on Software
by juniors and seniors in the software engineering con- Engineering Education; number 640 in LNCS.-
centration. In this course, I introduce modeling in Z, Springer-Verlag, October 1992.
using the text by Potter, et. al.22 . Later, when object- 3. John D. Musa, Anthony lannino, and Kazuhira
oriented technology is presented, I incorporate Z as a Okumoto. Software Reliability : Measurement,
functional specification too], using the work of Hayes Prediction, Application (Professional Edition).
and Coleman on coherent object-oriented analysis.2 3 McGraw-Hill, New York, 1990.
The notion of design refinement and functional verifi-
cation is touched upon, but always in the context of 4. J. M. Spivey. The Z Notation: A Reference

modeling a problem solution. The resnIts are gratify- Manual (Ind Edition). Prentice-Hall, Englewood
ing: surveys at the beginning and end of the course Clifts, N.J., 1992.
show a definite shift towards the acceptance of for- 5. Cliff B. Jones. Systematic Software Development
mality as useful in practice. Though the students are Using VDM. Prentice Hall, Englewood Cliffs,
skeptical about their ability to transfer this technol- N.J., 1990.

205 lth Annual National Conference on Ada Technology 1993

I

1 6. Joseph Goguen. Parameterized programming. 20. Darrell Ince and Derek Andrews. Practical For-
IEEE Transactions on Software Engineering, mal Methods with VDM. McGraw-Hill, 1991.
10(b):528-543, September 1984. 21. Barbara Liskov and John Gudtag. Abstraction

7. Edsger Dijkstra. A Discipline of Programming. and Specification in Program Design. MIT Press,
Prentice-Hall, Englewood Cliffs, NJ, 1976. Cambridge, 1986.

8. John Guttag and James Horning. An introduction 22. Ben Potter, Jane Sinclair, and David Till.
to LCL, a Larch/C interface language. Technical An Introduction to Formal Specification and Z.
Report 74, Digital Systems Research Center, July Prentice-Hall, Englewood Cliffs, NJ, 1991.

* 1991.
23. Fiona Hayes and Derek Coleman. Coherent

9. Samuel C. Florman. The Existential Pleasurea of models for object-oriented analysis. In Andreas
Engineering. St. Martin's Press, New York, 1976. Paepcke, editor, OOPSLA '91. ACM Press, Oc-

10. Henry Petroski. To Engineer Is Human: The tober 1991.
Role of Failure in Successful Design. St. Martin's
Press, New York, 1985. Biography

11. Billy Vaughn Koen. Definition of the Engineering
Method. American Society for Engineering Edu- Michael J. Lutz is a Professor of Computer Sci-
cation, Washington, D.C., 1985. ence at the Rochester Institute of Technology in

Rochester, NY', where he has been a faculty mem-
12. Mary-Frances Blade. Creativity in engineering. ber since 1976. In addition, he has irdustrial experi-

In Myron A. Coler, editor, Essays on Creativity ence as a software designer, project leader, group man-
in the Sciences. New York University Press, New ager, and consultant in areas as diverse as portfolio as-
York, 1963. set management, real-time operating systems, optical

metrology, data communications, microfilm imaging,13. Thomas Allen. Distinguishing engineers from sci- and environmental auditing. His research interests in-
entists. In Ralph Katz, editor, Managing Pio- chlude object-oriented technology, formal methods, and
fessionals in Innovative Organizations. BallingerPublshing Cnambride, Mrgaz1988n. Bacomputer science education. Professor Lutz received aPublishing, Cambridge, MA, 1988. B.S. in Mathematics from St. John Fisher College and

14. Nathaniel S. Borenstein. Programming as if Peo- an M.S. in Computer Science from SUNY Buffalo. He
pie Mattered: Friendly Programs, Software En- is a member of the ACM and the IEEE Computer
gineering and Other Noble Delusions. Princeton Society. He can be contacted via electronic mail at
University Press. Princeton, New Jersey, 1991. njlecs.rit.edu.

15. Darrel C. Ince. An Infroduction to Discrete Mcth-
ematics and Formal System Specification. Oxford
University Press, 1988.

16. Anthony Hall. Seven myths of formal methods.
IEEE Software, 7(5):11-20, September 1990.

17. Paul Johnson. Experience of formal development
in CICS. In John A. McDermid, editor, The The.
ory and Practice of Refinement, pages 59-78. But-
terworths, London, 1989.

18. Norman Delisle and David Garlan. A formalI specification of an oscilloscope. IEEE Software,
7(5):29-36, September 1990.

19. John Guttag, James Horning, and Andres Modet.I |Report on the Larch shared language. Techni-
U cal Report 58, Digital Systems Research Center,

April 1990.

I
1 11th Annual National Conference on Ada Technology 1993 206

MODELING THE COSTS OF MILITARY SOFTWARE

Capers Jones, Chairman
Software Productivity Research, Inc.

1 New England Executive Park
Burlington, MA 0 1803

617 273-0140

Summar metrics that have never been formally
validated, and with statistical techniques that

Software produced for the U.S. military are at best questionable.
services is one of the key components of
national defense, and will play aiv increasing As the 20th century draws to a close, it is
role in all future military operationis. It is desirable for the phrase "software
therefore of critical importance to engineering" to cease being an oxymoron,
understand the key factors which influence and become a valid description of a true
the costs, schedules, and quality levels of engineering discipline. An important step in
software production. that direction will be to evaluate and validate

all of the common metrics and measurement
Unfortunately, historical measures based on techniques for software under controlled
"Lines of Source Code" have tended to conditions, in order to select a standard set
conceal vital information, and have slowed that can be used with little or no ambiguity
software research efforts. Improved metrics and with minimal subjectivity.
based on the functional content of software
are now available. These new metrics reveal Consider some of the basic metrics that
that coding itself is not the major cost driver confront us in a normal day. Upon arising,
of large-scale software production. Both we may check the outside temperature and
paperwork and defect removal costs perhaps note the barometric pressure to
outweigh pure coding by substantial margins judge if it will rain. At breakfast, we may
f or-military software. think about the cholesterol levels and the

calories in the food we eat. If we purchase
gasoline on the way to work, we perhaps

Introduction consider the octane rating of the fuel we are
purchasing. We might also reflect oii the

Measurement, metrics, and statistical analysis horsepower of the automobile engine.
of data are the basic tools nf science and
engineering. Unfortunately, the software All of the above meiLrics are interesting in
industry has existed for almost 50 years with several respects: 1) They are synthetic
a dismaying paucity of measured data, with metrics which deal with invisible phenomena

207 11th Annual National Conference on Ada Technology 1993

I

I that cannot be counted directly; 2) Most approaches changed the work of software
adult humans understand the significance and development in profound ways.
basic meaning of the metric: 3) Very few
individuals (less than 1%) humans know how By the start of the 1990 decade more
to calculate thesc metrics or understand their powerful languages such as Ada, Objective

i mathematical derivations. C, C++, and Modula 2 were being used.
New CASE tools and I-CASE tools were

Now consider the metrics history of software available, which offered significant new
engineering. Prior to the 1970's, the phrase capabilities to software engineers. New
"software engineering" did not exist. Those standards such as DoD 2167A were in effect
of us in the field were simply called for military software, and the ISO 9000
"I"programmers." standard series was starting to be deployed

for civilian software.
The only metrics that we used were simple
natural metrics such as integers. We tended These new approaches made profound
to use lines of code because we wrote our changes in the cost and effort structure
programs on special programming tablets required for software production and
where the lines were clearly visible and often maintenance. The tasks associated with pure
numbered. 3ome programming languages coding were being reduced almost daily.
such as Basic could not even be used without However, the tzsks associated with planning
line numbers. and specification preparation were increasing

daily as well.
In the 1960's and 1970's, fairly low-level
languages such as Assembly, JOVIAL, and Unfortunately, attempts to model these
FORTRAN were being used for the bulk of profound change3 in the software paradigm
military programming. The effort devoted using traditional "Lines of Source Code"
to programming and code-related work was metrics discovered deep mathematical
the dominant activity of software. Other problems with the metric itself LOC metrics
activities such as requirements, design, and were proved to have a built-in bias which
user documentation were seldom measured penalized more powerful languages such as

, at all. Ada. LOC metrics also failed to deal with
the enormous costs and resources devoted to

When non-coding activities were measured, plans, specifications, and other forms of
we used simple natural metrics such as software paperwork.
integer counts of the pages or words.
Craphics seldom occurred in commercial The first powerful synthetic metric
software, and topics such as reusable code, developed for software was the Function
object-oriented languages, pull-down menus, Point, which was created in the middle
graphical interfaces, mice, etc. were still in 1970's by Allan Albrecht and his colleagues
the future. at IBM. This metric was placed in the public

cdo~nain in October of 1979 at a joint
In the 1980's and early 1990's, an explosion SHARE/GUIDE/IBM conference in
of new languages, n,.,v methods, and new Monterey, California (1).

I
I 11th Annual National conference on Ada Technology 1993 208

.17 TI 7

If Fiture historians want to explore the "KLOC" (where K stands for 1000) have
evolution of software engineering as a true been used in print in more than 10,000
engineering discipline, October 14th 1979 is articles and books since 1946 Most users of
a strong contender to be considered the LOC and KLOC regard this metric as being
exact starting point. Allan Albrecht's objective, and indeed a number of standard
presentation in Monterey marks the first day reference books and articles on metrics have
in software history than an effective synthetic cited the objectivity of LOC as a key virtue.
metric for software was publicly stated.

However, from discussions with more than a
thousand software managers and

Problems wilh21ings of SpurceQr professionals, it is unfortunate to report that
Metric the 'LOC metric may be the most subjective

metric used in refereed articles in the last 50
The subjectivity of "Lines of Source Code" years.
can be illustrated by the followinh analogy:
Ask a software engineer or software When LOC and KLOC originated as
manager a. basic question: "Is the speed of software metrics, the only languages in use
light the same in the United States, and were machine language and basic assembly
Germany?" Obviously the speed of light is language. For basic assembly language,
the same in every country. physical lines and logical lines were equal:

each source statement, occupied one line on a
Then ask the following question: "Is a Line coding sheet or one tab card. From 1946
of Source code the same in the United States until about 1960, LOC and KLOC metrics
and Germany?' The answer to this question were reasonably well defined and rezýsonably
is, "No, it is not" objective. The explosion of languages from

1960 forward destroyed the objectivity of
Software articles and research in Germany LOC and KLOC, and their validity for
has tended to use physical lines more often economic studies as welt.
than logical statements, while the reverse is
true for the U.S. and Japan.. From surveys of counting practices carried

out by the author and his colleagues at
There have been other metrics that diffecred Software Productivity Research, the varieties
from country to country, such as U.S. of subjective methods associated with LOC
gallons and Imperial gallons. Also statute counting creates a total range of apparent
miles and nautical miles differ significantly. size of more than one order of magnitude for
These differences are common knowledge, the software industry as a whole. The
while the differences in "Lines of Source largest number of major code counting
Code" definitions are comparatively obscure, variations observed within a single company
and sometimes not fully stated by software was six, and the range for counting the size
authors. of a single control project within that

company was approximately 5 to 1. This is
The most widely used software metric since far too broad a range to be tolerated for an
the industry began has been Lines of Source engineering metric.
Code. or LOC. Either this metric or

209 11 th Annual National Conference on Ada Technology 1993

I

The standard dictionary definition of embarrassing for a major industry such as
subjectivity is "Particular to a given -software to continue to use a metric that
individual; personal." Under that definition, it does not work, and to do so without evenu Ud that Lnmust be concluded that LOC and KLOC are realizing what is wrong with it!

in fact subjective metrics and not objective
ones. Unfortunately, many well-known books on

software measurement and economncs do not
Code counting subjectivity could be contain even a single statement about this
eliminated by establishing standard counting well-known problem. To cite but two
conventions for each major language. examples, both Barry Boehm's Software
Indeed, Software Productivity Research (2), _Enineerng Esnomigs (5) and Robert
the IEEE (3), and the Software Engineering Grady's and Deborah Caswell's Software
Institute (4) published preliminary draft LOC Metrics: Establishing a Company-Wide
counting proposals within a year of one Program (6) use LOC and KLOC metrics
another. without any warnings or cautions to the

readers of the paradoxical nature of these
Unfortunately, the SPR, IEEE, and SEI draft metrics for high-level languages.
standards differ, so even in the domain of
standardization of LOC counting practices Unfortunately, the software measurement
subjectivity is present. Note that for many initiatives at SEI (7) also fail to discuss the
modern languages such as 4GL's, problems and paradox of LOC metrics, and

- spreadsheets, query languages, object- do not discuss functional metrics at all.
oriented languages, and graphics icon-base These unfortunate omissions place the SEI
languages, none of the current draft measurement work some distance behind the
standards are technically acceptable. state of the art, although other aspects cf the

SEI. measurement studies are fairly
The LOC Paradox advanced.

SThe LOC and KLOC metrics have a much The paradox with LOC and KLOC is caused
deeper and more serious problem than a by the impact of the fixed and inelastic costs

* simple lack of standardization: LOC metrics of certain activities that are always part of
U are troubled by a deep mathematical software projects. The •problem of

paradox. Both productivity aud quality measuring productivity in the presence of
appear to move backwards when measured fixed costs has long been understood for
with LOC! manufacturing economics.

Indeed, the tendency of LOC and KLOC to However for software, it was initially
move backwards as economic productivity described by the author in 1978 (8), and fully
improves is a much more serious problem for explained in 1986 in the book Programming
software economic studies than the Produivit (9).
subjectivity of LOC and KLOC. This
mathematical problems with LOC are severe There is a basic law of manufactuiing
enough so that they make the phrase economics that if a manufacturing process
"software engineering" seem ridiculous. It is includes a high pcrcentage of fixed costs, and

11th Annual National Conference on Ada Technology 1993 210

a. 7 /

the number of units produced goes down, for multi-language studies. Following are
the cost per unit will go up. This same law situations where LOC and KLOC are
also applies to software. When LOC is used ambiguous enough to be harmful to
as a manufacturing unit, and there is a move economic vnderstanding and their usage
from low-level to high-level languages, then should constitute malpractice:
obviously the number of "units" to be created
will decline in the presence of fixed costs. A) LOC and KLOC metrics should be

avoided for economic studies involving
Using LOC and KLOC metrics for a single object-oriented languages, 4GL's,
language can produce valid results if generators, spreadsheets, and graphic-icon
standard counting rules are applied, based languages.
However, for cross-language comparisons,
or for projects containing multiple languages B) LOC and KLOC metrics should never be
(such as Ada and Assembly) the results are used to compare unlike languages, such as
always invalid and paradoxical. C++ and Ada.

The LOC metric, compared to Function C) LOC and KLOC metics should not be
Points, also distorts quality measurements. used for applications containing multiple
The situation with LOC is so paradoxical and languages, such as C and Assembly or Ada
absurd in the presence of high-level and Assembly.
languages that it is fair to state that the LOC
metric has slowed the advance of software D) LOC and KLOC metrics should not be
engineering as a true engineering discipline. used to measure software plans,
It is time to step up to this problem, and specifications, or other non-code
declare LOC metrics to be an example of deliverables.
professional malpractice.

E) LOC and KLOC metrics should not be
Malpractice is a serious situation, and implies used for quality normalization (i.e. defects
the usage of an approach known to be per KLOC) for studies nvolving multiple
harmful under certain conditions, which languages.
should have been avoided through normal
professional diligence. For example, a Consider the similar problem of carrying out
medical doctor who prescribed penicillin for international cost surveys that involve
a patient known to be allergic to that multiple currencies such as dollars, yen,
antibiotic is an illustration of professional pounds, lire, deutschmarks, francs, etc.
malpractice. Using LOC and KLOC metrics
to evaluate languages of different ievels There are two methods for carrying out
without cautioning about the paradoxical accurate international cost surveys: A) One
results that occur is unfortunately also an of the currencies such as dollars is selected
example of professional malpractice. as the base currency, and all other currencies

are converted into equivalent amounts; 2) A
The LOC and KLOC metrics grow synthetic base metric such as European
progressively more ambiguous and ccunter- Currency Units (ECU) is selected, and all
intuitive as the level of languages goes up or quantities are expressed in those units.

21 1
•'" 211 11th Annual National Conference on Ada Technology 1993

/ ' A /

A- - .A.i / "/ ' ".. ."

S. . . .
7 7.'•

The acceptable methods for dealing with
multiple currencies provide a useful model Now consider the same project, only let us
for software studies dealing with multiple assume that the programming language
languages: used was Ada:

A) One of the languages such as Assembly Ada Language Version
Language is selected as the base language, (2,000 LOC and 50 Function Points)I and all other languages are converted into
equivalent amounts. Activity Effort Costs

B) A synthetic base metric such as Feature Requirements 2.0 $20,000
Points is selected, and all quantities are Design 2.0 $20,000

,;*expressed in those units. Of these two Coding 1.5 $15,000
*methods for dealing with multiple languages, Testing 1.5 $15,000

method B is preferred today. Documents 2.0 $20,000
Management 1.0 $10,000

Comparing Ada and Assembler with LOC Totals 10.0 $100,000

Since the Ada language is such a key
component of military software strategy, it Using standard economic definitions, the
is important to understand the way LOC Ada version is twice as productive as the

* mericsinteact ith da.Assembly language version, since the same

Folwn*r w btrc xmlso h goods were delivered with only half the
* Folowng ae to abtrat exmpls ofthe effort and expense.

same project, with one version created in
Assembly Language and the other in the Hwvr hnpoutvt smaue
Ada language, to clarify the paradox of usnmafctrgeooiswhLO

LOC merics.defined as the unit of manufacture, the real

AsebyLnug eso economic advantages of Ada cannot be

iiin (10,000 LOC and 50 Functie~n Points)
*LOC per Cost per

Activity Effort Costs Staff Month Source Line

Requirements 2.0 $20,000 Assembly coo $20.00
Design 4.0 $40,000ICoding 6.0 $0,000 Ada 200 $50.00
Testing 4.0 $40,000
Documents 2.0 $20,000
Management 2.0 $20,000 When the manufacturing unit is switched

Toas2.0 $0,0 from LOC to Function Points, the
Total 20. $20,000economic advantages of Ada become clear.

I11th Annual National Conference on Ada Technology 1993 212,

X/ -

Since both versions perform the same use LOC metrics for the entire project.
functions, assume that the Function Point Synthetic metrics such as Function Points
totals of the Assembly and Ada versions are are much more appropriate for
identical: 50 Function Points each. normalization of mixed-activity economic

and quality studies.
FP Per Cost per
Staff Month FP It is useful to conclude by examining actual

data. A report on the MK-160 gun
Assembly 2.5 $4000 computing, system produced by Paul W.

Lusher of the Naval, Surface Weapons
Ada 5.0 $2000 Center' at Dahlgren (10) provides

confirmation of the hypothesis that coding
Observe that when Function Points are used is no longer. the dominant cost driver for
as the unit of manufacture, rather than military software applications.
Lines of Code, standard economics and
manufacturing economics now agree. Ada The MK-160 is a mixed-language system
is significantly more productive than written primarily in CMS2 and containing
Assembly language. about 120,632 LOC and 1240 Function

Points.
Function Points are synthetic metrics, and
one of the advantages of synthetic metrics The sum of the plans, specifications, and
is that they have wide general utility. For user documents for the project totaled to
example, the synthetic metric horsepower 5,585 pages.
can be used on electric, diesel, and gasoline
engines with equal precision. The total effort for the project was 795.6

person months.
Natural metrics, such as LOC, cause
serious trouble when they are used outside Coding itself constituted 221.5 person
their normal domain. In the case of LOC, months, or only 27.8 % of the total.
it the inclusion of non-coding activities
which degrade their accuracy. Activities concerned with paperwork

(plans, specifications, user documents)
amounted to 256.8 person months, or about

*Data from theý MK-160 Gun System 32.3% of the total.

The basic thesis of this paper is that coding Activities concerned with defect removal
is no longer the dominant cost driver for operations (reviews, inspections, testing)
military software projects, and other amounted to 200.1 person months of effort,
elements such as paperwork, testing, and or about 25 % of the total.
non-coding tasks now constitute the bulk of
military software costs. The effort for the various non-coding

activities associated with this project far
If coding is only a minor portion of total outweighed the code-related activities:
softwaire costs, then it is inappropriate to

213 11th Annual National Conference on Ada Technology 1993

-f I

about 72.1% of the total effort went on The overall productivity rate for this
non-coding activities, project expressed in LOC is about 152

LOC per person month (note that pure
Following are some of the details of this coding had a rate of about 545 LOC per
project, to illustrate the mixture of coding, person month).
paperwork, defect removal, and other
activities which comprise modern military Expressed in Function Points per person
weapons software: month, the overall rate was 1.56, and the

coding itself had a rate of aboui 5.6
Function Points per person month.

* Software Effort for the MK-160 Gun
SSystem For mixed language projects, and for

comparison between projects, Function
* Activity Person Months of Points are markedly superior to the older

Effort LOC metrics for all normalization,
economic, and quality resep.rch purposes.

Development plan 5.7
Test plan 6.9
Personnel management 91.4 Summary and Conclusions
Pro'gress reports 25.4
Configuration control 25.7 Software development in 1993 is changing
Requirements 58.4 dramatically under the combined impact of

SSystem -rchitecture 11.3 new languages, new standards, new tools,
Initial specification 65.3 and new methods.
Final specification 23.6
Data design spec 23.1 In order to explor-e the impact of these new
Data structure review 4.5 approaches, it is urgent for the software
Coding 221.5 industry -- both military and civilian -- to
Unit test 14.6 be able to measure the impact of improved
Function test 21.3 practices.
Regression test 7.9
Irtegration 14.7 Lines of Code metrics are no longer viable,
Integration test 18.5 and indeed a case can be made for

I Stress test 10.4 relegating LOC metrics to the category of
System test 31.6 "professional malpractice."
Field test 23.1
Independent test 23.7 Modem functional metrics are becoming
Operator's guide 12.2 the dominant tool for exploring software
Maintenance manual 21.9 productivity and quality as the industry
Reference card 0.2 matures.

"Total 795.6 Indeed, the non-profit International
Function Point Users Group (IFPUG) has
been growing at a rate of 46% per year and

11th Annual National Conference on Ada Technology 1993 214

1i ~ i I II I

is now the largest measurement association 6) Grady, Robert B. ard Caswell,
in the United States. Deborah L; Software Metrics --

Establishing a Company-Wide
it is critical that the software measurement Program; Prentice Hall, Englewood
work of the U.S. military services, the Cliffs, NJ; 1987; 288 pages.
DoD, and the Software Engineering
"Institute (SEI) be at state of the art levels. 7) Rozum, James A.; Software

Measurement Concepts for Acquisition
This means that the basic concepts of Program Managers; Technical Report
functional metrics should now be included CMU/SEI-92-TR- 11; ESD-TR-92-11;
in the training of software engineers and Software Engineering Institute;
software managers. Carnegie Mellon University;

Pittsburgh, PA; June 1992; 68 pages.

References 8) Jones, Capers; "Measuring
Programming Productivity and

1) Albrecht, A.J.; "Measuring Quality;" IBM Systems Journal; Vol.
Application Development 17, No. 1; 1978; pp. 36-63; IBM
Productivity"; Proceedings of the Joint Corporation, Armonk, NY.
IBM/SHARE/GUIDE Application
Development Symposium; October 9) Jr'n P , Capers; Programming
1979; pp 83-92. Productivity; McGraw-Hill, New

York, NY; 1986; 282 pages.
2) Jones, Capers; "Rules for Counting

Procedural Source Code;" Applied 10) Lusher, Paul W.; Productivity
Software Measurement; McGraw-Hill; Baseline Report for MK-160 Gun

New York, NY; 1991; pp 309-316. Computing System Software
Development; Gun Fire Control

3) Draft Standard for Software Systems Branch (G72); NAVSWC,
Productivity Metrics; P1045/D2.1; Dahlgren, VA; October 1991; 51
IEEE Software Productivity Metrics pages.
Working Group; December 1990.

4) Software Size Measurement with
Application to Source Statement
Counting; Software Engineering
Institute (SEI), Pittsburgh, PA; August
1991.

5) Boehm, Barry W.; Software
Engineering Economics; Prentice Hall,
Englewood Cliffs, NJ; 1981; 767
pages.

215 11th Annual National Conference on Ada Technology 1993

I

I Futures Panel

Moderator: Miguel Carrio, MTM Engineering, Inc.

Panelists: Dr. Samuel Metters, CEO, Metters IndustriesJames Smith, President & CEO, SEMA CorporationHeinz Kagerer, Vice President, SIEMENS-NIXDORF

1tcn

I
I

I
'I

I l1th Annual National Conference on Ada Technology 1993 216

- ---- --.. • . .o.• -

7Author's Index

7/Armitage, James... 46
Barrett, Martin.................... 92
Bekele, Dawit .. 184
Bernon, C ... 184
Bchlmann, Rodney... 150
Bott, Frank 97
Boyken, Jeffrey D....................... I................... 121
Braun, Christina ;................................. 46
Cogan, Kevin J.. 144
Cort, Gary..........................30
Coutant, Raymond.. 46
Eldridge, Charles A.. 17
Filali, M... 184
Gray, Jeff 38

-- Gray, John H ... 169
Gref, Lynn G ... 112
Hooper, James .. 86,1169
Jones, Capers I................... 206
Kirch, Murray... 139
Kovacs, Roger V.Z .. 123
LeJeune, Urban A.. 139
Lee, Yuh-jeng.. 8
Lodgher, Akhtar.. 86
Lutz, Michael J.. 200
Mitchell, Bria In K... 121
O'Connor, Michael J .. 121
Oberndorf, Tricia.. . 160
Plishka, Richard M... 127
Price, Margaretha W... 70
Ratcliff, Mark ... 97
Reese, Kimberly 30
Richman, M. Susan 92
Rigaud, J.M .. 184
Sayah, A............ 184

*Schmiedekamp, Carl....................................... 160
Spuck, Ill, William H.. 112
Squitiert, LCDR Vincent 160

*Stewart, William R .. 55
Stotter-Brooks, Tim ... 97
Terry, Robert Haddon 70
Vitaletti, William G .. 55

*Waite, John V................................... 8
*.Whittle, Benjamin R ... 97

217 11th Annual National Conference on Ada Technology 1993

IL

IDATC::

~a

-DTIC

